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236 P. CHADWICK, A.D. COX AND H. G. HOPKINS

Discussion of the effects of explosions in soils is complicated by many factors, foremost among
which are the physical characteristics of natural soils. In this paper, certain aspects of the mechanics
of deep underground chemical explosions are treated theoretically in terms of a model of the
physical situation. This model refers to the dynamic expansion of a spherical cavity in a plastic-
elastic, incompressible, ideal soil of infinite extent, and it is analogous to one which has been used
in studies of underwater explosions.

The main predictions of the model studied are as follows. In all cases of practical interest,
the expansion of the cavity is large and occurs rapidly, with an extensive region of the surrounding
soil undergoing plastic deformation. The amplitudes of any subsequent pulsations are small. The
features of the disturbance show much dependence upon the type of soil and upon the depth at
which the explosion takes place.

. |
/I

< 4 The present model seems to provide an acceptable account of some of the qualitative features of
— cavity formation due to a deep underground explosion. Furthermore, some quantitative agree-
§ S ment is found between predicted and observed sizes of cavities in one special case.
olm
4= NoTATION
E 8 A list of symbols is given below. All notation is defined when first introduced in the paper,
~ but it should be noted that a few symbols have different meanings in different contexts.
S‘f E Young’s modulus
Eg U shear modulus
52 g v Poisson’s ratio
8‘2 ¢ cohesion 1 physical
= . . . soll phaysical constants
TS ) angle of internal friction
- Y = 2ccos$/(1—sing) yield stress parameter
a = 2sin¢/(1—sing) shear resistance parameter
p density ,
S,P,Z,MS referring to different types of ideal soil (see §4-2-3)
P pressure exerted by T'NT explosion products on camouflet surface
V1572 adiabatic indices for N7 explosion products
4 energy release of explosive charge
b atmospheric pressure
h depth of burial of explosive charge
. g acceleration due to gravity
~ IT = p,+pgh initial uniform hydrostatic pressure in ideal soil
:é €x,$,a,0 subscripts referring to explosion products, soil, atmosphere and initial
> 'S conditions
8 E r radial co-ordinate
- 5 time
T O U, v radial displacement and velocity
T mm F= —%‘ = %—? + v%g convective derivative of any function F
SZ
%9 0,,09¢,,6,  radial and tangential components of stress and strain rate tensors
§§ s ]6:;, é,éb, éb ra.ldli;lfand .tangential components of elastic and plastic strain rate tensors
n yield function
%E A plastic flow-rate parameter
o=

W, We, W?  total, elastic, and plastic rates of work done on soil (per unit volume)
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DEEP UNDERGROUND EXPLOSIONS 237
a radius of camouflet surface
b,d radius of plastic-elastic boundary during first expansion and contraction

phases, respectively
U, total energy input from explosion products
U, potential energy stored at infinity
U, total elastic strain energy in soil ..
. . components of partition of energy
U, total plastic work done on soil
Us

total kinetic energy of soil

L(i=1,2,...) durations of successive expansion and contraction phases of camouflet
motion

Lo b, (i=1,2,...) durations of elastic and plastic-elastic parts of phases of camouflet
motion

1. INTRODUCTION

Discussion of the effects of explosions in soils is complicated by many factors, foremost
among which are the physical characteristics of natural soils. Progress in understanding
the mechanics of the phenomena involved is not easily achieved, and previous investigations
have led only to rather limited conclusions. In this paper, attention is confined to the sim-
plest situation, namely that of an underground chemical explosion occurring atsucha depth
that only effects essentially associated with elastic stress waves are propagated to ground
level. This situation is of central importance in the general subject of explosive action in
soils. The model of cavity or camouflet motion studied here is an approach to the study of
underground explosions. It is believed to provide a realistic account of some of the quali-
tative features involved, although the interpretation and assessment of the quantitative
predictions obtained is uncertain due to the inherent limitations of the model assumed and
to a lack of sufficient experimental data.

It should be noted that the term camouflet is used in military mining to designate a mine
charge which, when exploded, has no disruptive effect at ground level (see, for example,
the Encyclopedia Britannica). Although the original meaning of camouflet was the mine charge
itself, it is here used to refer to the cavity produced by the explosion.

The reasons for the present study arise from the failure of Hopkinson’s size-scaling law
to apply to large explosions and also the need to extend earlier studies of camouflet motion
due to G.I. Taylor and W. G. Penney (see § 2). There is no direct concern here with the
art of military mining.

The contents of this paper are set out in three parts arranged as follows. Part Iis concerned
with certain preliminary considerations. It gives a discussion of the effects of explosions
in soils and the approaches made to their study, and an account of the dimensional theory
of explosions in soils. It also gives an outline of the physical properties of 7N T explosion
products and of ratural soils such as clays and sands, together with a discussion of the idealiza-
tion of these properties assumed in the remainder of the paper. In part II, attention is
given to the theoretical mechanics of ideal soils and the basic equations of spherical plastic-
elastic motion are derived. Part III is concerned chiefly with models of camouflet motion
due to Taylor and Penney and to the present authors, and detailed theories together with
numerical values are given. Finally, concluding remarks on the investigation are made.

29-2
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238 P. CHADWICK, A.D. COX AND H. G. HOPKINS

PART I. PRELIMINARY CONSIDERATIONS
2. EFFECTS OF EXPLOSIONS IN SOILS
2-1. General background

The general subject of explosion phenomena in soils embraces a wide range of topics
which are of considerable importance from both military and civil viewpoints. The
problems which merit attention are generally characterized by complexity and uncertainty
of the physical situation and by attendant mathematical difficulties in their theoretical
study. In particular, owing to the difficulty of developing satisfactory theoretical studies
of crater and camouflet formation, much reliance has perforce been placed upon simple
scaling laws. Such laws correlate the results observed for explosions of different sizes and,
within their range of validity, enable predictions to be made of the effects of an explosion
of any given size.

Until the end of World War II, the largest size of chemical explosion occurring in cir-
cumstances where predictions of the effects were needed was about 50 T (T denoting 109 cal,
the approximate energy release of a ton of TNT'), and it was found that the size-scaling
law due to Bertram Hopkinson (see § 3-1) led to reasonably satisfactory results. However,
the development of nuclear devices has greatly extended the size of man-made explosions,
up to those having an energy release of the order of 100 MT. Also, tests undertaken in the
United States Atomic Energy Commission’s series of nuclear and chemical explosions for
peaceful purposes (‘Project Plowshare’) have involved chemical explosions of sizes up
to 450 T.

Now Hopkinson’s size-scaling law, in the form in which it is usually applied, states, for ex-
ample, that the diameter and the depth of the crater formed by an explosion at ground level
are both directly proportional to the cube-root of the charge volume or, equivalently, to a
typical linear dimension of the charge (see § 3-1). Although Hopkinson was concerned solely
with chemical explosions, it is only necessary in the proof of his law to confine attention to
some particular class of explosions in which the nature of the explosive and the surrounding
medium are invariable. Within that class, it is predicted that the shape (say, the quotient
of the depth and the diameter) of the crater formed by an explosion at ground level remains
the same. However, this prediction that crater shape is independent of explosion size is now
known not to be verified by the observed results. Thus craters formed by nuclear explosions
become relatively more shallow as the explosion size increases. More precisely, the experi-
mental data (see Glasstone 1962, pp. 289—-296) show that, within the range of size of nuclear
explosions, the crater diameter and depth increase in proportion approximately to the one-
third and one-fourth powers of the total energy released. A similar trend seems likely also
to be the case for chemical explosions, although this does not appear to have yet been
definitely established. It may also be noted that lunar (and perhaps also terrestrial) craters,
the formation of which is attributed by some authorities to the impact of meteorites, show
the same trend of increasing relative shallowness with size (see, for example, Hill & Gilvarry
1956).

The failure of Hopkinson’s law to correlate the effects of explosions of high energy yield is
one reason for renewed interest in theoretical studies of the mechanics of explosions in soils.
A likely explanation of this failure follows from the assumption, made in the derivation
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DEEP UNDERGROUND EXPLOSIONS 239
of Hopkinson’s size-scaling law, that effects due to gravity are negligible (see §3-1). Itis
customary, however, in soil mechanics to describe the condition for the onset of plastic
flow in a typical natural soil by Coulomb’s law of failure (see § 4:2-2). Cooulomb’s law states
that the shear stress at which flow occurs is the sum of a constant cohesive stress and a
frictional stress that increases linearly with the normal component of the stress vector.
Although this law is based upon experiments carried out at low stresses and strains, a similar
trend, not necessarily linear, seems likely under explosion conditions. Thus the resistance
to relative movement in a region of soil undergoing plastic deformation will increase, often
markedly, with depth. Such an effect invalidates the basis of Hopkinson’s size-scaling law,
which is therefore expected to fail ultimately for extrapolations to large explosions, cer-
tainly in respect of results for quantities associated with the vertical direction, such as
crater depth. Hence the applicability of Hopkinson’s size-scaling law is limited to relatively
small explosions.

2-2. Previous theoretical studies

Dimensional analysis provides a qualitative approach to the study of explosion pheno-
mena in soils. This approach was used in the unpublished work, dating from about 1915,
of Hopkinson, which led to the size-scaling law discussed in § 2-1.

Taylor (1940) in his work on the theory of one-dimensional, finite amplitude, plastic
wave propagation uses a version of this theory to discuss the propagation of earth waves
from an explosion; he notes that the governing equations are formally identical with those
for the propagation of one-dimensional, finite amplitude waves in a compressible perfect
fluid (the pressure being a function only of the density), although the correspondence
between the two situations exists only for loading waves, since solid materials exhibit
hysteresis in the plastic range. Taylor’s work is closely related to analysis by Th. von
Kédrman, Kh. A. Rakhmatulin and others (see, for example, Craggs 1961 and Hopkins
1961).

Some other work which concerns the propagation of shock waves and the formation of
cavities is of general interest in connexion with the present study. The present treatment of
camouflet formation in soils is essentially an extension of that of cavity formation in metals,
discussed by Hopkins (1960). Some general accounts of work on shock waves, particularly
in metals, are given by Rinehart & Pearson (1954, chap. 9 and 10) and Hopkins (1961),
primarily from experimental and theoretical viewpoints, respectively (see also Stanyu-
kovich 1960, pp. 568¢tseq.). There is also extensive Russian work concerning explosions
in soils under spherically symmetric conditions. Much of this interesting work is essentially
based upon the hypothesis of finite compaction in soils, and it is discussed further in §7-3
(see also Cristescu 1958, pp. 227 ¢t seq.; 1960).

The first step towards a quantitative treatment of the problem of camouflet formation
was made by Devonshire & Mott (1944), although no account was taken of the frictional
strength of'soils. This treatment was based upon earlier work by Bishop, Hill & Mott (1945)
concerning static deep-punching in metals (see Hill 1950, p. 104), but important quanti-
tative differences were found as a result of the values of Young’s modulus and yield strength
being much smaller for soils than for metals. Hill (1948) later derived dynamical equations
to describe the formation of spherical camouflets in ideal soils, frictional strength and com-
pressibility being neglected. The main purpose of Hill’s work was to discuss the problem
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240 P. CHADWICK, A. D. COX AND H. G. HOPKINS
in general terms, and no attempt was made to derive detailed quantitative results from
the theory.

The limitations of the above theoretical studies of explosion phenomena in soils were
apparently first appreciated by Taylor and Penney, who suggested a new approach for
more realistic studies that took account of the frictional as well as the cohesive strength
of soils. This approach was applied by Penney (1954, private communication) to a discussion
of the mechanics of camouflet formation by underground explosions and of crater formation
by surface explosions. In the former case, the object was first to provide predictions of the
sizes of camouflet produced by chemical explosions, reasonable agreement being found with
observed values (although these are not extensive), and secondly, to afford some general
understanding of the mechanics of explosion phenomena in soils. In the latter case, the
object was to provide size-scaling laws valid for large explosions to replace Hopkinson’s
law which, as stated in §2-1, is valid only for small explosions. Penney’s analysis of crater
formation by large chemical explosions assumes that the crater and the associated soil
deformation are identical with those caused by slowly thrusting a rigid sphere into the
ground. Itissupposed that the radius of this sphere increases linearly with the cube-root of
the total energy release, the constant of proportionality being determined from small-
scale experimental data. Then, assuming that the energy available for crater formation is
a constant fraction of the total energy released by the chemical explosion, and making
plausible assumptions for the non-linear law of resistance to the penetration of the sphere,
it is possible to estimate crater sizes. Penney predicts that for sand and clay, and for a range
of crater diameter from 20 to 4000 ft., crater diameter and depth vary as the 0-30 and 0-24
powers of the energy release. These results exhibit the same trend as the experimental data
quoted in §2-1.

The agreement achieved between experimental data and the theoretical predictions
based upon the approach of Taylor and Penney to crater and camouflet formation gives
confidence in the mathematical models that they used. At the same time, the fact that their
studies are incompletely developed has needed to be remedied by further work. In this
paper the approach made by Taylor and Penney to underground explosions is elaborated
and a more comprehensive study of the mechanics of camouflet formation is undertaken.
Although the methods of plasticity theory are not universally appropriate to studies of
situations involving large deformations in soils caused by explosions, here at least this
approach seems to be justified.

2-3. Sequence of events in underground explosions

In continuing this account of preliminary considerations, it is appropriate to discuss
briefly the essential phenomena characterizing an underground explosion. It should be
noted that there are some similarities, and at the same time important differences, between
the cognate problems of explosions in condensed media such as soils, metals and water.
There is much qualitative information on the sequence of physical events due to an ex-
plosion taking place in a solid or liquid medium. For detailed discussions of explosion
phenomena in water and soils, Cole (1948) and Glasstone (1962) should be consulted (see
also Pokrovskii & Fedorov 1957).

The disturbance created by an explosion that produces a camouflet is primarily the result
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DEEP UNDERGROUND EXPLOSIONS 241

of the exchange of energy between the gaseous explosion products and the surrounding
soil. The energy source envisaged here is that provided by a spherical charge of chemical
high explosive, say, for definiteness, TNT.

The physics of the detonation of a spherical charge of TNT" does not depend upon the
nature of the surrounding medium. This process has been described, for example, by Cole
(1948, chap. 3). Assuming that initiation takes place at the centre of the charge, the outward
motion of the detonation front and the variation of the physical and chemical properties
of the gases in its wake are described by the hydrodynamical-chemical theory of spherical
detonation waves. The motion is characterized by geometrical similarity, the pressure
being of the order of 10° atm. and the temperature being about 3000 °C at the detonation
front. At the instant of arrival of the detonation wave at the charge surface, where the
surrounding soil is at rest, there occurs a sudden and extremely violent blow on the soil
face. The immediate effect of the blow is the propagation of a disturbance (normally a
shock wave) outwards into the hitherto undisturbed soil. Simultaneously, a rarefaction
wave is reflected inwards through the gaseous explosion products, and there is no longer
geometrical similarity. Owing to dissipative processes and spherical divergence, the dis-
turbance propagated outwards into the soil is attenuated and ultimately it decays into an
elastic wave. The material behind the shock front is heated irreversibly and, at the same
time, set in outward motion. Although particle velocities in the wake will not be small,
the associated displacements are not comparable with those occurring in the subsequent
stages of the motion, when the camouflet first enlarges considerably and later on executes
pulsations. Owing to successive wave reflexions at the camouflet surface and centre, there
are rapid fluctuations of pressure in the explosion products, but after a very short time the
major part of the soil shock wave may be considered to have been emitted. In the process,
there will have been a considerable reduction of the total energy retained by the gases, and
the repeated passage of waves through them will to some extent have effected more uniform
conditions. Earlier, the cohesive and, perhaps, frictional strengths were negligible
factors in determining the mechanical behaviour of the soil near the camouflet surface, the
soil behaving much like a compressible fluid medium at these high stress intensities. Under
the much-reduced stress intensities now prevailing, the mechanical behaviour of the soil
is expected to be closer to that normally encountered in civil engineering practice, although
some changes associated, for example, with compaction may have occurred (see §7-3).

The main part of the first expansion phase of camouflet motion may now be considered to
have been originated ; it takes place behind the soil shock wave. In other words, the outward
motion of the camouflet surface can be regarded approximately as being due to the expan-
sion of the gaseous explosion products, the energy of which has been reduced by the trans-
ference of energy to the soil shock wave. In the ensuing motion, the inertia of the soil and
the mechanical properties of the explosion products and the soil provide the necessary
conditions for oscillatory motion with non-linear damping.

Qualitatively, camouflet motion may be expected to exhibit some similarities with under-
water bubble motion. Thus, in particular, some oscillatory motion of the camouflet surface
is to be expected. However, although this does occur, one prediction of the present model
is that, in all practical circumstances, the amplitude of the pulsations subsequent to the
first expansion phase is small (see § 7-1+7). Thus there is an important quantitative difference
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between the motion of camouflets and of bubbles. The motion in the first expansion
phase is damped by plastic deformation, which involves the dissipation of mechanical
energy. Although its amplitude is not large, there is some inward motion after the end of
this phase. Subsequently, damping is due to the propagation of elastic strain energy to
large distances and to dissipative processes in the soil and, to a lesser extent, in the explosion
products. Thus the strength of soils and their capacity for dissipating mechanical energy
by plastic deformation result in marked differences between the detailed quantitative
effects of explosions in soils and in water. In particular, camouflet motion consists almost
entirely of one half-period of oscillation, namely the first expansion phase. Penney (1954,
private communication) has described this type of motion as dead-beat, and although this
term has a different meaning in dynamics, it is a convenient one in the present context.

2-4. Aims and methods of the present investigation

The purpose of this paper is to give a connected theoretical treatment of a model of the
mechanics of camouflet formation. It will be assumed that the motion is spherically
symmetrical. This is valid to a sufficient degree of approximation if the region of soil
subjected to plastic deformation is reasonably homogeneous and does not extend to ground
level, and if appropriate account is taken of soil weight. Thus only effects essentially associ-
ated with elastic stress waves are propagated to ground level. This condition means of course
that, for a given depth of charge burial, the situation envisaged becomes progressively less
realistic with increase in the size of explosion. Moreover, no account can be taken of soil
stratification.

Figure 1 is a schematic representation of the soil disturbance associated with an expanding
camouflet, and it shows the zones of elastic and plastic deformation and also the zone of
fracture. In the present study, the possible occurrence of soil fracture is for convenience
ignored, the fracture zone therefore being combined with the plastic zone.

The most important objective of a theory of camouflet motion is to predict the variation
with time of the radii of the camouflet surface and the plastic-elastic boundary. Also of
interest is the determination of the fractions of the charge energy converted into shock
wave energy, elastic strain energy, plastic work and kinetic energy of the soil. Inasmuch
as camouflet motion appears to be dead-beat, practical interest is centred largely upon the
first expansion phase.

The above quantities depend upon a large number of physical properties of the explosion
products and the soil. Simple dimensional analysis (discussed in § 3) provides a qualitative
approach and leads to scaling and modelling laws, valid under certain conditions, of
particular interest in connexion with the design and interpretation of experiments and with
the prediction of results. Although it is possible to include formally in such an analysis all
physical properties believed to be of any appreciable significance, such generality is only
achieved at the expense of detailed quantitative predictions. A quantitative theoretical
study of camouflet motion can only be developed on the basis of mathematical models of
underground explosions which portray a simplified description of the complex physical
processes involved in practice. The first aim of theoretical investigations is to identify the
physical processes which determine the main features of the disturbance. Ultimately, a
reasonably simple theory is required which is based upon realistic physical simplifications
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DEEP UNDERGROUND EXPLOSIONS 243

of the true situation and which leads to quantitative predictions to be judged against
experimental data.

A model of underground explosions necessarily requires some simplification of the true
mechanical behaviour of both the explosion products and the soil, and this is discussed
in §4. The basic equations governing the model of camouflet motion are developed in § 5,
with restriction to spherical motion. One further matter finally requires attention, namely
the allowance to be made for the effects of gravity. The simple assumption is made that the
soil is initially in a state of uniform hydrostatic pressure taken equal to the sum of the atmo-
spheric pressure and the overburden pressure at the position of the charge centre (cf.
Cole 1948, chap. 8). In this way some allowance is made for the weight of the soil without
violating the restriction to spherical symmetry.

elastic plastic fracture
zone zone zone

Ficure 1. Schematic representation of disturbance in soil due to an expanding camouflet.

The above approach to camouflet motion leads to a precise mathematical problem of
the propagation of non-linear plastic-elastic waves due to pressure applied at the surface
of a spherical cavity in an infinite medium. The complexity of this problem is apparent.
Therefore, in order to achieve some simplification of the analysis, it is assumed that there
is isochronous motion, as in the analysis of underwater explosions (cf. Cole 1948, chap. 8).
This means that all wave propagation phenomena are ignored, either compressibility or
inertial effects being everywhere neglected. This assumption is consistent with the absence
of a direct treatment of the soil shock wave. Itis further assumed that the explosion products
are at uniform pressure, that volume changes take place adiabatically, and that the energy
has been reduced to one-third of the detonation energy owing to the emission of the shock
wave. These assumptions are known to be realistic in studies of underwater bubble motion.

30 Vor. 256. A,
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The value of the fraction of the detonation energy carried by the shock wave has no signifi-
cance in analysis, but it does affect the numerical predictions. The true value, appropriate
to given circumstances, is not known. Here,a value fixed at two-thirds is assumed, this being
suggested by its validity for underwater explosions. Comparison between experimental
data and theoretical predictions may lead to a revision of this provisional estimate.

The above model of camouflet motion is amenable to detailed theoretical analysis, but
the computational work required to obtain numerical values in particular cases is beyond
the scope of hand calculation. The arithmetic has therefore been done on the I.B.M.
computers at Aldermaston. In § 6, the detailed theory of a point source model of an under-
ground explosion, due to Taylor and Penney, is developed. This fictitious situation, which
represents essentially an extrapolation of the real one, provides a simple but useful approxi-
mate description of the first expansion phase of camoufiet formation. In §7, the detailed
theory of a spherical charge model of an underground explosion is developed, and attention
is given to the first expansion phase, including its initial stages, and to the pulsations which
follow this phase. This latter theory and some other elaborations of the original theory of
Taylor and Penney are due to the present authors. The various theories of camouflet motion
under isochronous conditions discussed here, although quite closely related, exhibit some
important differences. The nature of these differences and the reasons for their existence
are connected with the conditions assumed at the initiation of the first expansion phase
and with some degree of freedom in the choice both of elastic stress-strain relations and of
assumptions necessary for isochronous motion. Numerical values are presented for three
typical ideal soils representing a fully saturated clay, a dry sand and a partly saturated clay
or mixed soil. In certain cases, numerical values are given for different theories and a com-
parison between them effected. The values obtained for the final camouflet sizes are com-
pared with the very limited experimental data available. Also included in §7 is some
discussion, appropriate to conditions of camouflet formation, of the changes in the strength
of soils due to rate-of-strain effects and of the choice of finite elastic stress-strain relations
for soils.

3. DIMENSIONAL THEORY OF EXPLOSIONS IN SOILS

Dimensional analysis provides a simple, albeit limited, approach to the study of camouflet
formation in soils. Field quantities (such as displacements, velocities, stresses, etc.)
associated with the motion all depend upon a large number of physical properties of the
explosion products, the soil and the atmosphere, upon the geometrical features of
the situation and upon gravity. The important quantities include the variations with
time of the camouflet radius, the energy partition and the extent of the region of plastic
deformation. The particular values of these quantities at the termination of the first expan-
sion and contraction phases of the motion are of considerable interest. Althoughitis possible
to include formally in a dimensional analysis all the physical properties concerned, or at
least those believed to be of any appreciable significance, such generality is only achieved
at the expense of quantitative information. However, the importance and usefulness of a
dimensional analysis of a physical situation is that it leads directly to scaling and modelling
laws, valid of course under certain specified conditions.
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3-1. Hopkinson’s size-scaling law

Scaling and modelling laws for explosions in various media are widely known and used,
but unfortunately not always with a proper realization and understanding of their limita-
tions. Of particular interest here is Hopkinson’s law of size-scaling, and it is important to
understand correctly the bases and limitations of this law in connexion with explosions in
soils. Thornhill (1957) has stated Hopkinson’s law of size-scaling for explosions as follows:
‘If two explosions are identical in all but size, then they are mathematically identical when
expressed in units derived from the same fundamental pressure and velocity and a funda-
mental length proportional to the linear dimensions of the charge.’

The analysis required to establish Hopkinson’s size-scaling law for explosions in soils
may be given under quite general assumptions. In contrast, it is necessary to recognize
the limitations of the models of camouflet formation given later in this paper, which reflect
the considerable physical simplifications made. So far as the present discussion is con-
cerned, it is not necessary to specify all the relevant physical properties of the explosion
products, the soil and the atmosphere, since these properties remain the same within any
one class of explosions. It should be noted, however, that detailed specification of the more
important of these physical properties would be necessary in any discussion of modelling
laws correlating effects for different classes of explosions involving, say, different types of
explosives and soils. Modelling laws are not considered here, attention being confined to
Hopkinson’s size-scaling law.

Since the relevant physical properties need not be specified in detail, account is taken
implicitly of such effects as non-linear compressibility (perhaps resulting in the formation
of shock waves), rate of strain and work hardening or softening in the soil, as well as depar-
tures from conditions of spherical symmetry. None of these effects is directly included in
the later theoretical analysis of this paper. The situation envisaged here is one in which
the depth of charge burial is sufficiently great for the camouflet surface not to reach ground
level. Nevertheless, if a crater is formed, the main arguments of the present section are
not affected. In the case of camouflet formation, the disturbance produced in the air is
unlikely to be of appreciable significance, even for quite shallow explosions.

Suppose that, following detonation, the motion depends upon certain sets of quantities
which characterize the physical properties and geometrical features of the explosion pro-
ducts, the soil and the atmosphere, together with the bodily effect of gravity. Let ¢,,., ¢,
and ¢, denote these sets of quantities. Then, for example, ¢, would include, on the assump-
tion that the explosion products constitute an ideal polytropic gas, the velocity of sound
behind the detonation front, the detonation velocity and the adiabatic index; ¢, would
include elastic and plastic constants; and ¢, would include atmospheric pressure, velocity
of sound and adiabatic index. The geometrical features include the size, shape and
position of the explosive charge. It is sufficient to define explicitly only the following
quantities:

[,h representative linear dimension for charge size, and depth of charge burial
V,  velocity of longitudinal elastic waves in soil
p, atmospheric pressure at ground level

g  acceleration due to gravity.

30-2
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Thus, according to the present scheme, the quantities involved are ¢,,, ¢, and ¢, (not
explicitly described), together with /, 4, V,, p, and g.

Let the fundamental pressure, velocity and length be p,, ¥, and /. Since no reference is
made to thermal properties, the dimensions of temperature are conveniently supposed to
be given in terms of the present mechanical system of dimensions. In the above system of
units, the fundamental units of mass, length and time are M = *p, V2, L = land T = IV, "
Let @ denote any physical quantity which is dependent upon the motion, and [@] be that
combination of the fundamental dimensions (i.e. p,, ¥, and /) having the same dimensions
as Q. Then Q" = Q/[Q] is the corresponding non-dimensional (or reduced) physical
quantity. In principle, on the basis of known physical laws, the problem of an explosion in
a soil could now be completely formulated in terms of a system of equations, together with
associated initial, boundary and continuity conditions, all expressed in non-dimensional
form. Let x; (i = 1,2, 3) be rectangular Cartesian co-ordinates with their origin at the
centre of the camouflet, and ¢ be time measured from a convenient instant. Then x; = x;,//
and ¢ = V¢t/l are the corresponding non-dimensional co-ordinates and time. It follows
that any quantity ' is determined as a function of the reduced space and time variables
x; and ¢ and of the non-dimensional modelling parameters g¢,, ¢:, ¢., £/l and gl/V} (the
quantities ¥, and p, having been universally reduced to unity). In mathematical terms,

Q" = Q' (%1515 Qo> 45> 9ar /1, L V). (3-1)
On the basis of any assumed mathematical model of the physical problem (such as those
considered in later sections of this paper), direct inspection of the governing equations
might reveal that not all the modelling parameters occur independently. Although this
result would permit some simplification of the form of the function @’, it has no direct
significance here.

Suppose now that attention is confined to a particular class of explosions which differ
only in charge size / and depth of charge burial 4. Suppose further that the relevant quan-
tities included in g¢,,, ¢, and ¢, are such that their dimensions can all be expressed in the form
(£a)*(V,)# these quantities accordingly being independent of / in the system of fundamental
units comprising p,, ¥V, and /. This assumption excludes, in particular, any discussion of
stratified soils or rate-of-strain effects. The modelling parameters ¢,,, ¢; and ¢, occurring
in equation (3-1) are then constants and need not be explicitly denoted. Thus, for such a
class of explosions, equation (3-1) reduces to

Q = Q'(x, 25 hL, gl| V). (3-2)
Now, in general, if the relation (3-2) is to be completely independent of all the modelling
parameters, it is necessary first to restrict attention to explosions for which £/l is constant
(that is, to explosions which are geometrically similar in every respect), and secondly, as
gl/V}y varies with /, the function @’ must be assumed to be sensibly independent of the
modelling parameter g//V} over some set of explosions falling within the class already
defined. Equation (3-2) then becomes

Q = Q'(x,1), (33)
and this final result, derived under the stated conditions, is the mathematical expression of
Hopkinson’s size-scaling law. The law is seen to rest, in particular, upon the assumptions
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that geometrical similarity between explosions is achieved and that the effects of gravity
and rate of strain are negligible. It is therefore at best an approximation to the true state
of affairs. The particular importance of this law is that, within the class of explosions
considered, and subject to the validity of the assumptions, it co-ordinates results for all
explosions. Thus, if experimental data are available for one particular size of explosion,
relations of the type (3:3) can be calibrated and results then predicted for different
sizes of explosion. More precisely, equation (3-3) shows that, for any assigned values of
x; and ¢, the quantity Q' is completely specified, and it follows that @ oc [Q]. Now if @ has
dimensions M*LAT7 when expressed in terms of mass, length and time, then it will have
dimensions pg V,; 2*~7 3*#+7 in terms of p,, V, and /. Thus, for example, if @ is a length or
time associated with the motion, then @ is directly proportional to /. It should be noted
that, when there is spherical symmetry, equation (3:3) is more simply written as

Q’ = Q,(rla t,)a (3'4)
where 7’ is the reduced radial co-ordinate. Now suppose that, in equation (3-4), @ is taken
as a, the radius of the camouflet surface. Itis then clear that &’ is an invariable function of ¢/,
and that the values aj, and #; (i = 1,2, ...) of @’ and ¢, corresponding to the termination of
successive expansion and contraction phases, are constant, for each value ofz, independently
of the charge size. In other words, a; and f; are proportional to /, and, in particular, the
radius of the camouflet surface at the end of the first expansion phase and the time of
expansion are both proportional to the representative linear dimension of the charge.

Similar results may be derived when the explosive charge is characterized, not by a
representative length /, but by either its total mass -# or its total energy release &. Now if
Pa> V, and either # or & are taken as fundamental pressure, velocity and mass or energy,
then the fundamental units of mass, length and time are .4, #p;3 V} and 4373 V% or
&Vy2, &4p7d and €ip 2V, Y, respectively. It then follows as above that lengths or times
associated with the motion are directly proportional to either .#% or &3. In particular, a;
and {; are directly proportional to these quantities. Results of this kind are examples of
the so-called cube-root scaling law, which is the imprecise description commonly given to
Hopkinson’s size-scaling law. It may be noted that, despite general usage, the cube-root
scaling law cannot be formulated in terms of charge weight.

It has been shown that Hopkinson’s size-scaling law (equation (3-3)) is valid under
rather restrictive conditions. Thus, in particular, effects due to gravity, rate of strain and
soil stratification (or other inhomogeneities) should be negligible. Apart possibly from
rate-of-strain effects, it seems clear on physical grounds that the required conditions may
be satisfied quite well when stress intensities are of a much higher order of magnitude than
those due to gravity. Thus, for example, because of the high pressures involved, the fraction
of charge energy absorbed in the formation of the soil shock wave should be virtually in-
dependent of both gravity and the yield strength of the soil. In fact, this fraction should be
determined almost entirely by the variation of compressibility of the soil with pressure.
However, in the main part of the motion, not all the required conditions for the validity of
Hopkinson’s law can be satisfied in practice. Coulomb’s law of plastic yielding in soils
(see equation (4-4)) implies that flow is inhibited by the prevailing pressure, and therefore
the resistance to deformation in soils increases with depth. Thus, for a soil exhibiting
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internal frictional resistance, Q' cannot, in general, be regarded as independent of the model-
ling parameter g//VZ. Equation (3-3) is then no longer valid, and, for example, the ratio of
camouflet size to charge size is no longer constant. Hence, even if Hopkinson’s law is found
experimentally to be correct over some range of charge size, it will be expected to fail beyond
a certain limit.

4. PHYSICAL PROPERTIES OF EXPLOSION PRODUCTS AND SOILS

This section concerns the mechanical behaviour of explosion products and soils, and the
related assumptions made in the theoretical analysis of this paper. Particular attention is
given to the choice of numerical values of physical parameters required in the application
of the present theory of camouflet motion. For definiteness, attention is confined to TNT,
but the procedure for other high explosives would be similar.

The term natural soil as used in this paper is intended to cover the range of relatively soft,
uncemented geological materials of the Earth’s crust which, broadly speaking, are com-
paratively loose aggregates of mineral particles, the voids being filled with water, air or
both. The distribution of particle size is within the clay, silt and sand fractions. The limits
of the range of soils envisaged are represented by the frictionless, fully saturated clays and
the cohesionless dry sands. A partly saturated clay or mixed soil, exhibiting frictional as
well as cohesive strength, can be regarded as an intermediate case. Specifically excluded
from the present discussion are brittle materials, such as rock.

In contrast, the term ideal soil is used in this paper to describe a material which behaves
exactly according to the various laws discussed later, which are idealizations of the
behaviour of natural soils. The reader should note this distinction carefully.

4-1. Explosion products

The detonation process in high explosives is discussed in considerable detail by Cole
(1948, chap. 3) and requires only brief mention here. Calculations by Jones & Miller
(1948) predict that, for a loading density (i.e. density of solid explosive) of 1:5g/cm?
(93-61b./ft.?), the detonation velocity in T'NT is 7720m/s (25300ft./s), in reasonable
agreementwith the experimental value of 6790 m/s(22 300 ft./s). Furthermore, these authors
calculated the adiabatic pressure-density relation for the explosion products, and Taylor
(1950) used their data in making a detailed calculation of the properties of detonation
waves. It may be noted that the detonation velocity is well in excess of stress wave velocities
in soils (see table 2). Also, for a 11b. spherical charge of TNT (radius 4-2cm or 0-14ft.),
detonation is completed in about 5 us, a time much shorter than the predicted duration
of the first expansion phase of camouflet formation in situations of practical interest (see
table 9).

The condition of geometrical similarity existing behind the detonation front ceases to
apply when the detonation wave reaches the charge surface. Initially, the ensuing motion
involves a disturbance, which is probably a shock wave, travelling outwards into the soil,
and a rarefaction wave travelling inwards through the explosion products. The theory of
the propagation of spherical shock waves due to explosions in solid materials, including
metals, soils and rocks, has received attention in the U.S.A. and U.S.S.R. and, to a lesser
extent, in the U.K. Some theoretical studies are available (see § 7-3), but their application
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to explosion phenomena necessitates a knowledge of the appropriate constitutive equations
at high stress intensities, and at present this is extremely limited.

For these reasons (see also § 2-4), no direct attention is given in the present paper to the
shock wave propagated through the soil. Instead, as in studies of the problem of under-
water bubble motion (Cole 1948, chap. 8), it is assumed that the motion is isochronous
(see § 5-6), all wave propagation effects being neglected. In order to allow for the induced
motion and the energy associated with the shock wave, it is assumed that the detonation
energy of the isochronous model (referred to as the camouflet energy &,,,, ) is a known fraction,
here taken as one-third, of the true detonation energy . Both & and &, refer to the energy
released in the expansion of the gaseous explosion products to atmospheric pressure. Further,
in order to avoid the necessity of discussing the wave motion in the gases, it is assumed that
waves have traversed the camouflet a sufficient number of times for it to be possible to treat
the volume changes of these products as occurring under conditions of uniform density
and pressure.

log,, P
[

=

L | L

-1 0 1 2 3
logy, p
Ficure 2. Relation between pressure P (Lb./in.?) and density p (Ib./ft.?) during adiabatic expansion
of explosion products of TNT at a loading density of 93-6 Ib./ft.? (data adapted from Jones &

Miller 1948). 0, data from Jones & Miller (1948) ; (a) least-squares fit to these data ( @, ex-
cluded); (b) relation assumed in §7.

(.

Jones & Miller (1948) have calculated, for a loading density of 93-61b./ft.3, the relation
between temperature, pressure and density during the adiabatic expansion of the gaseous
explosion products of 7N T Their numerical values are set out in table 1, and the variation
of pressure with density is shown in figure 2. It is clear that the curve expressing this can
be approximated by two straight line segments, intersecting at a point corresponding to
a critical density. The relation expressed by these two lines refers to an explosion of total
energy release &, whereas here a relation is required which pertains to a model explosion
of energy release &, = §&. The assumption is made that this latter relation is also repre-

sented by two straight lines, with the same slopes and critical density as before but now
occupying a position corresponding to an energy release &,,, . In other words, the new
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curve is obtained by a bodily translation, parallel to the pressure axis, of the original curve
(see figure 2).

Since uniform conditions are assumed within the explosion products, the law of variation
of gas pressure P with camouflet radius a is

[Fy(ajag)—3n if 1<ala,

<
\Py(a*ag) -3 (afa®) 37 if alay = a*|a,, o

where g, is the initial value of ¢, and a* is the value of a corresponding to the critical density.
The constants a*/a,, 7, and y, may be determined from the data in table 1, and then the
modified initial pressure F is so chosen that the work done by the explosion products in
expanding adiabatically from pressure P to atmospheric pressure is equal to &,,,, . On
the basis of the data given in the last column of table 1, y, and y, are given the exact values
3:00 and 1-27, respectively. Then, from a least-squares fit to the data given in table 1, the
values in the range 1200 to 1500 °K being ignored (see table 1 and figure 2), it is found that

a*Jay — 1-530. (4-2)

For TNT (G;H;04Nj;), the detonation energy is 247-9 kcal/mole (see Jones & Miller 1948)
and the molecular weight is 227-141. It is then found that

Py = 4-882x10°Lb./in.?%, (4-3)

if the atmospheric pressure is taken to be 14-7 Lb./in.2

TABLE 1. TEMPERATURE 7', PRESSURE P, DENSITY p AND ADIABATIC INDEX ¥ = d(InP)/d(Inp)
DURING ADIABATIG EXPANSION OF EXPLOSION PRODUCTS OF 7'N7 AT A LOADING DENSITY

OF 93-6 LB./FT.3
Data adapted from Jones & Miller (1948).

T (°K) P (Lb.fin.2) p (Ib./ft.3) y
3400 2-303 x 10° 1-215 x 102 3-36
3200 1-562 1-056 263
3000 1133 9351 x 10 276
2800 8-460 x 105 8-412 2:93
2600 6-340 7-623 3-10
2400 4-696 6-920 3-27
2200 3-334 6-230 3-30
2000 2-200 5-495 3-05
1800 1-291 4-607 276
1700 9058 x 10 4054 2-39
1600 6-263 3-474 2:09
1500% 4251 2888 1-86
1400* 2-824 2:318 1-68
1300% 1-833 1792 1-54
1200% 1-157 1-329 1-44
1100 7-081 x 103 9449 x 10° 1-37
1000 4177 6-424 1-32

900 2:358 4170 1-29
800 1-263 2570 1-27
700 6-324 x 102 1-494 1-27
600 2-899 8-071 x 10-1 1-27
500 1-183 3-976 1-27
400 4-087 x 101 1721 1-27

* Data omitted in least-squares fit for determining constants in equation (4-1).


http://rsta.royalsocietypublishing.org/

I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

DEEP UNDERGROUND EXPLOSIONS 251

4-2. Soils

The theoretical treatment of problems of soil mechanics is difficult even when attention
is confined to the constructional problems of civil engineering. This is because the mech-
anical behaviour of natural soils under the action of applied loading is complicated,
varied and incompletely understood. Further, as Terzaghi (1943, chap. 1) has remarked,
the inhomogeneity of soil deposits of any appreciable extent precludes the possibility of
completely specifying the physical data in problems of soil mechanics. Thus the inter-
pretation of theoretical predictions requires the exercise of experience and judgement.

It follows from the above remarks that theoretical studies in soil mechanics necessarily
relate to ideal soils, the physical properties of which are an approximation to those of
natural soils. Such a procedure can lead to useful information provided that the uncer-
tainties of the true situation are kept in mind. Refinements which attempt to take account
of the physical properties in more detail will lead to complications of the analysis, and
improvement in approximation will be achieved only at the expense of considerable labour,
perhaps unwarranted in civil engineering problems, but possibly essential in explosion
problems.

The subject of the mechanical behaviour of natural soils has an extensive literature,
some discussion of which is essential for an appreciation of the bases and limitations of the
definition of an ideal soil adopted in the present study. For additional information, the
reader is referred to the textbook by Terzaghi (1943) and the review article by Skempton
& Bishop (1954).

Any analysis of camouflet formation involves the use of constitutive equations valid over
much wider ranges of stress, strain and rate of strain than are ever encountered in civil
engineering. The appropriateness of a mathematical model of the physical situation can
therefore only be assessed a posteriori by the direct comparison of experimental data
and theoretical predictions. The ideal soil considered in this paper is defined to be a
solid that obeys Hooke’s law within the elastic range and Coulomb’s criterion at yield
under the restriction of perfectly plastic flow. It is expected that this idealized material
will provide a reasonable model of natural soils so far as mechanical behaviour under
conventional conditions of low stress, etc., is concerned, but it is not known how closely
ideal soils represent natural soils under explosion conditions. The hypothesis, made in this
paper, that an ideal soil gives a reasonable account of the mechanical behaviour of natural
soils under all conditions, is therefore to be regarded as tentative and subject to revision in
the light of further evidence from experiments. The assumption of perfect plasticity implies
direct neglect of all physical effects, such as work hardening or softening and rate of strain,
which may influence the yield strength of the soil. However, once average strains and
rates of strain are known or have been estimated, an approximate account of such effects
may be taken by ascribing a suitable nominal value to the yield strength.

Even under conventional conditions, the physical properties of natural soils, as measured
in the field and in the laboratory, and those of ideal soils are by no means the same
thing. For this reason, divergencies are inevitable between theory and practice in soil
mechanics (see Terzaghi 1943, vii—viii).

g1 VoL. 256. A.
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4-2-1. Strength characteristics and structure of natural soils under conventional conditions

As interpreted here, the term soil includes clays, silts and sands, in increasing coarseness
of texture. A soil is thus a relatively loose aggregate of mineral particles, the voids being
filled with water, air or both.

In terms of strength, a fundamental division exists between cohesive soils, such as clays,
and cohesionless particle aggregates, such as dry sands. The properties of cohesion and
friction in soils are due to essentially different kinds of interaction between the constituent
particles. Suppose that a sample of soil contains a mixture of mineral particles ranging in
size from, say, 0-002 to 2 mm. Then, for all particle sizes, frictional forces are set up at inter-
particle contacts. Furthermore, there are interparticle cohesion forces which become more
important as the particle size diminishes. In general, both these effects are present, and
the size distribution of soil particles and the intensity of the applied stresses will determine
their relative contributions to the bulk mechanical behaviour of the soil.

The above discussion treats a soil essentially as a granular structure, but the resistance
to deformation also depends upon the water and air content of the voids and upon the
external conditions imposed during deformation. Now consider the strength character-
istics of a sample of fully saturated soil in which, initially at least, the pore space is com-
pletely occupied by water. The water is much less compressible than the soil structure and
hence, under undrained conditions, when the natural water content is retained, the applied
load is supported mainly by the water. Since practically no pressure is then exerted at the
interparticle contacts, no frictional forces are brought into play, and the soil behaves as
a frictionless material. On the other hand, under fully drained conditions, the natural water
content is allowed to escape freely from the sample as the deformation proceeds. The applied
forces are then supported by the granular skeleton, and the soil exhibits both cohesion and
internal friction.

A theoretical and experimental investigation of the strength characteristics of saturated
soils has been made by Bishop & Eldin (1950), and the effective vanishing of frictional
strength for a range of saturated soils may be taken to be established. Suppose that a soil
sample is initially almost completely saturated. Then, under the action of sufficiently high
pressure, the air within the pore space is compressed and driven into solution with the water,
and, with contraction of the voids, a state of complete saturation may be achieved. Under
these conditions the frictional strength of the sample, although perhaps originally quite
high, falls to zero.

It may be noted that it is usual in soil mechanics to deal with effective rather than actual
stresses. The components, in some rectangular Cartesian co-ordinate system, of the effective
stress tensor are defined to be j; = 0;;-+ud;;, where u is the pore water pressure and 0;;are the
actual stress components. The concept of interparticle friction is then formulated in terms of
the components g3;. The question of drainage does not now arise since itis found, for example,
that under zero drainage conditions the normal component of the effective stress vector
at an interparticle contact is zero, and therefore no frictional resistance occurs. Such a
formulation of the present problem would, however, involve separate consideration of the
motion of the soil skeleton and the pore water, and an equation expressing the flow of
pore water through the skeleton would also be required (sce Skempton & Bishop 1954).
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A model of soil mechanical behaviour which represents a natural soil as a two-phase
system, consisting of a porous elastic solid through which fluid can percolate, has been
proposed by Biot (19414, 1955). The resulting theory has been applied to a number of
situations characterized by small deformations; in particular, to problems of soil consolida-
tion (Biot 19414, 1956 a; Biot & Clingan 1941, 1942) and of wave propagation (Biot 19564, ¢).
The present treatment, in which the soil is regarded as a single-phase system, is mathematic-
ally more flexible than Biot’s theory, and furthermore the duration of the first expansion
phase of camouflet motion is so small that the migration of pore water through the mineral
skeleton seems unlikely to have a significant effect upon the bulk motion of the soil.

(a) Clays. Clay soils have been widely studied because of their importance in civil
engineering. A clay is basically an aggregate of fine mineral particles, together with water
and air, both normally present in the interparticle voids. The presence of these fine particles
implies that clays exhibit cohesion. Clays are also relatively impermeable, which means
that all but the slowest deformations of a fully saturated sample may be regarded as taking
place under undrained conditions, the movement of the pore water being restrained by
the structure of the clay. Thus, fully saturated clays normally behave as though they were
frictionless. This effect is evident in results obtained by K. Terzaghi (see Bishop & Eldin
1950, p. 14) who found, in tests made on identical samples of a clay, that the angle of
internal friction was about £° at normal rates of loading and about 23° at extremely slow
ones, when precautions were taken to ensure that drainage occurred.

(b) Sands. The basic structure of a dry sand is very much simpler than that of a clay.
The average particle size for sands is still small, although it is larger by an order of magni-
tude than the average for clays, and the voids in a dry sand are entirely filled with air.
The material has practically no cohesion and is virtually incompressible, apart possibly
from slight compaction and so long as no crushing of individual grains occurs. When a sam-
ple of dry sand is compressed, the external forces are supported entirely by forces set up
over interparticle contacts. The tangential components of these forces account for the
overall resistance to deformation. A completely saturated sand has no apparent frictional
strength under undrained conditions and then offers negligible resistance to deformation.
A partly saturated sand offers frictional resistance and has in addition some cohesion.

(¢) Other soils. The foregoing remarks provide a broad qualitative description of the
structure and physical properties affecting the resistance to deformation of clays and sands.
Silts may be regarded as intermediate to clays and sands, and most natural soils are mixtures
of these basic types. In general, soils possess both cohesive and frictional strengths, but, in
view of the sensitiveness of these properties to external conditions, physical parameters
rather than constants must be taken to represent them.

4-2:2. Mechanical behaviour of ideal soils

Suppose that a natural soil sample is being deformed under the action of an increasing
uniaxial compressive stress. Once this stress satisfies a certain yield criterion, characteristic
of the material and depending upon the test conditions, the soil exhibits flow. Under
the action of an increasing uniaxial tensile stress, failure occurs at an even lower stress,
but by fracture rather than flow. The stresses set up in the ground during the expansion
of a camouflet are predominantly compressive, and under these conditions soils undergo

31-2
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deformation mainly by flow. It is true that fractures do occur in the immediate vicinity of
the camouflet surface, but this effect cannot readily be included in theoretical studies. In
the present paper, soil regions undergoing deformation are assumed to remain continuous,
their mechanical behaviour accordingly being governed by field and constitutive equations
which, with appropriate initial, boundary and continuity conditions, determine the distri-
butions of density, stress, velocity and displacement.

It is assumed that the condition for flow to take place in an ideal soil is obtainable from
Coulomb’s (17%73) law, which states that the critical value of the shear stress depends upon
two physical parameters, namely the cohesion stress ¢ and the angle of internal friction ¢.
Let ¢ and 7 be respectively the normal and shear stresses exerted across a plane surface
element drawn through a typical point of a region of soil. Coulomb’s law states that the
onset of plastic flow at that point occurs when

|7] =c¢—otang (4-4)
for some orientation of the surface element. When equation (4-4) is used to describe the
behaviour of natural soils, it is found that the quantities ¢ and ¢ must be regarded as em-
pirical parameters, the values of which depend upon test conditions (such as drainage)
and also upon such factors as rate of strain and volume change; but for ideal soils ¢ and ¢
are, by definition, constant. The shear strength of natural soils can be analyzed in relation
to their true cohesion and angle of internal friction (see Skempton & Bishop 1954), but for
most practical purposes the strength is more conveniently expressed in terms of the em-
pirical parameters defined above.

Although there is a reasonably close correspondence between natural soils and ideal soils
under conventional conditions, the behaviour of natural soils under explosion conditions
is not known. Therefore the use of a model based upon ideal soils to predict results for
camouflet formation in natural soils involves a considerable extrapolation. However,
rather than omit altogether the effects of friction, for example, it seems better to include
these on a provisional basis, which may later be modified in the light of further information
about their precise nature.

Before Coulomb’s law (equation (4-4)) is incorporated into a theory of continuum
mechanics, it is convenient to restate it in invariant form. Let o}, 0, 05 be the three principal
components of stress. Then Shield (1955) has shown that the required form is

03—0, = 2ccosp—(o3+0,)sing if o, <o, <0y, (4-5)
with similar results for the other possible relations between the principal stresses. It should
be noted that Coulomb’s law for the onset of plastic flow in a soil is a generalization of
Tresca’s law for such flow in a metal. In principal stress space, restricting attention to stress
states for which none of 7, 0y, 05 exceeds ¢ cot ¢, equations (4-5) represent a set of six planes
enclosing the hexagonal pyramid shown in figure 3. For a given point within a region of
soil (taken to be isotropic, but not necessarily homogeneous), the position and shape of this
pyramid are determined by the values of ¢ and ¢, and the state of stress must correspond to
a point lying either inside or on the pyramid. Ifthe representative point lies on the pyramid,
then the condition for the onset of plastic flow is satisfied. It should be noted in passing that
plastic behaviour of natural soils does not necessarily involve any actual yield of the con-
stituent particles, permanent deformation in soils being mainly the result of particle
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reorientation accompanied by sliding at interparticle contacts. There may be some slight
initial volume changes and perhaps failure in the larger grains.

Natural soils appear to exhibit initially a linear type of deformation, as described by
Hooke’s law, although there is generally some dependence upon rate of strain, the so-called
elastic constants then varying with the rate of loading. However, it is not true that all soils
exhibit full clastic recovery, this depending upon the past history of the soil. It will be seen
later that analysis is complicated by the fact that finite strain may occur below yield in
circumstances when the soil strength is considerably enhanced by high stress intensities,
so that linear elasticity theory is not adequate.

V

D I3

Ficure 3. Coulomb yield surface in principal stress space.

In statically determinate problems (see Hill 1950, p. 131), Coulomb’s failure condition
(4-5), when combined with the condition of equilibrium, is sufficient to determine possible
stress distributions in regions of soil about to undergo plastic flow. Although this approach
is adopted in the classical theory of earth pressure (see Prager 1955¥5), it is applicable only
in certain situations. The deficiencies of this theory, which were first appreciated from
developments in the theory of metal plasticity, arise from the failure of Coulomb’s law to
specify either the changes in deformation following the onset of plastic flow or the possible
changes in resistance to deformation as flow proceeds. In the terminology of metal plas-
ticity theory (see, for example, Hill 1950, chap. 2), equation (4-5) defines an wnifial yield
surface. Immediate analogy then suggests that points lying inside this surface correspond to
elastic stress states and that those lying on it correspond to initial plastic stress states. Further-
more, it suggests that flow of an ideal soil may be described by the associated flow rule (see
Prager 1953). It then becomes possible to contruct formally a complete plastic-elastic
theory for ideal soils which differs from metal plasticity theory only in the form of the
initial yield function (now dependent upon the mean value of the principal stresses). So
far as problems of incipient plastic flow in soils are concerned, this approach seems reason-
able. However, in problems of continued plastic flow, the adoption of a non-associated
flow rule is indicated, since, as shown in §5, use of the associated flow rule implies the
physically unrealistic possibility of unlimited dilatancy. Thus, arguments based upon the
foregoing supposed analogy are subject to certain qualifications. The ability of a soil to
resist further deformation once plastic flow has occurred depends to some extent, as with
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ductile metals, upon the rate and magnitude of deformation, and the concept of perfect
plasticity accordingly has similar limitations for both soils and metals. At the present time,
theoretical soil plasticity is restricted mainly to perfectly plastic behaviour with the addi-
tional requirement that, in continued plastic flow, the condition of plastic incompressi-
bility is satisfied. Consistent theories of soil plasticity, with due account of compatibility
between stress and velocity fields, originated with work of Drucker & Prager (1952) and
Drucker (1953), later extended by Shield (1955), Chadwick (1959, 1962), Haythornthwaite
(19604a), Cox, Eason & Hopkins (1961) and Cox (1962). A recent discussion of the yield
and flow properties of natural soils has been given by Haythornthwaite (1960). There is
also much Russian work on this subject, to which the above papers give some references.

The above discussion has been confined to the behaviour of soils when being loaded. It is
necessary, however, when discussing the contraction phases of camouflet formation, to
consider unloading behaviour. There are even less data available in this case, and the
assumed behaviour is taken by analogy with metal plasticity. This unloading behaviour,
which is discussed in more detail in §§ 6-1-2 and 7-1-7, s believed to represent a limiting case
in the sense that natural soils will recover less than is predicted by the theory. As will be
seen, the main conclusion that arises from consideration of the contraction phase is that
for ideal soils the extent of the contraction is generally negligible. In view of the above
remarks, this conclusion is likely to hold a fortiori for natural soils.

A continuum theory of elastic, perfectly plastic deformation of ideal soil has now
been formulated. This theory involves five physical quantities: two elastic constants,
say, Young’s modulus £ and Poisson’s ratio v, two plastic constants, cohesion stress ¢ and
angle of internal friction ¢, and the initial density p,. The properties of this continuum, as
described by soil plasticity theory, are very much simpler than those of a region of natural
soil, even when this latter is reasonably homogeneous. The theory is thus necessarily an
approximation, and the accuracy ofits predictions must be checked by direct comparison
with experimental data in situations where these can be obtained.

4-2-3. Values of physical constants

The task of choosing numerical values of the above-mentioned eclastic and plastic con-
stants appropriate to particular problems of soil mechanics is not simple. Basically, this is
due to the fact that a given soil is normally made up of three components (solid, liquid and
gaseous), and this situation is concealed in the phenomenological continuum approach
outlined above. In order to simplify theoretical studies it is assumed that the soil is isotropic
and homogeneous. Extensive and fairly uniform regions of natural soils do occur, for
example, in clay deposits and sand deserts, but generally there are a number of factors
which cause appreciable departure from uniform conditions, much depending upon the
size of the region considered. Among these factors are anisotropy within single strata brought
about by non-uniformities in the process of deposition and by pressure exerted by the over-
burden, surfaces of discontinuity arising from faults and from juxtaposition of different
strata, and variability of water content, as occurs normally near ground level due to
changing weather conditions and also where the influence of a water-table is felt. Thus the
physical properties of soils in their natural state are seldom likely to be known to any high
degree of accuracy, for, even if the relevant physical properties of given soil samples can
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be determined with reasonable accuracy under laboratory conditions, considerable un-
certainty is introduced in estimating from such measurements the overall physical pro-
perties of regions of soils iz sifu. There is the further difficulty of extrapolating values of
physical constants to much higher strains and rates of strain than are ordinarily encountered
in experimental studies of soil mechanical behaviour. In view of these difficulties, it is
usually advisable, whenever convenient, to consider a series of values extending over the
probable range of conditions present in a particular application.

The following discussion of numerical values of the five physical quantities taken above
to characterize ideal soils is intended to be sufficiently general to cover the soil types defined
at the outset, and also to be specific in respect of certain soils. Thus, detailed physical data
are proposed for particular soils falling within the following three basic classes: fully
saturated clays with ¢ > 0 and ¢ = 0 (soil S), partly saturated clays or mixed soils with
¢ > 0and ¢ > 0 (soil P), and dry sands with ¢ = 0 and ¢ > 0 (soil Z). Itis also found neces-
sary later to consider a slightly frictional clay (soil AS, see §7-1:7). So far as large-scale
features of camouflet formation are concerned, it turns out that the most important soil
constants are ¢ and @. For this reason, for each pair of values of ¢ and ¢ corresponding to
asoil of one of the above types, only one pair of values of E and v is assigned, this being taken
as typical for all soils of that type.

(a) Elastic constants. In general, the elastic constants £ and » occur independently in
theoretical analyses. However, the shear modulus x = E/{2(1+v)} is the only elastic
constant occurring in Penney’s work, and only E occurs in the incompressible theory given
in this paper.

Let V, and ¥ be the velocities of propagation of longitudinal and transverse clastic waves.

Th
- Vi = E(1—)/{po(1+7) (1=20)}, V2 = Ef{2p,(1+7)} = #lpo (4-6)
and v is expressed in terms of the quotient V)V, (< 1) by
v=1-§1-V2VZ)L (4-7)

Thus the values of v and x are readily calculated from experimental values of the elastic
wave velocities ¥, and V,. Values of V, in clay deposits are often obtained from seismic
refraction experiments, but values of ¥ are only rarely measured in the field. Illustrative
values of elastic wave velocities and other data for some types of clay soils given in table 2
are due to J. K. Wright (1958, private communication).

It will be observed that, for the soils listed in table 2, the values of v are close to 1. In
Chadwick’s (1959) investigation of the quasi-static expansion of a spherical cavity in an
ideal soil, the neglect of the compressibility of the soil is found to have only a small influence
on numerical values. This conclusion should remain true in the dynamical theory so far
as motion of the camouflet surface is concerned, but the elimination of the elastic wave
motion makes the results of energy-partition calculations difficult to interpret.

The numerical values of Young’s modulus adopted for the three basic soil types are given
in table 3. ;

It appears from experimental data that the behaviour of soils is viscoelastic rather than
elastic, since the values of £ and v are frequency-dependent. Therefore theoretical work in
soil mechanics should strictly take account of the variation of these quantities. In respect
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of camouflet formation, however, preliminary calculations indicate that the large-scale
features of the motion are only weakly dependent upon the values of the elastic parameters.
Constant values, derived from stress-wave measurements and therefore relevant to the
correct range of frequency, are accordingly adopted here.

TABLE 2. VALUES OF ELASTIC WAVE VELOCITIES AND OTHER
DATA FOR SOME TYPES OF CLAY SOILS

soil v, (ft.s) V, (ft.s) v 2 (Lb./in.2)  p, (Ib./1t.3)
very soft clay (Dersingham) 5000 1500 0-45 4-9 x 10* 101
unconsolidated clay (Foulness) 5000 1500 0-45 58 x 10 119
Oxford clay (Stewartby) 5000 2000 0-40 94 x 104 109

(b) Plastic constants. Experimental values of the cohesion and angle of internal friction
of soils have been extensively reported, but these refer mainly to static tests. For fully
saturated soils, ¢ = 0 under undrained conditions. For clay soils, values of the cohesion
¢ normally lie in the range 0 to 20 Lb./in.%, but for exceptionally stiff clays ¢ may be as high
as 40Lb./in.2. At the other extreme of the range of soil types considered here, dry sands
have zero cohesion and angles of internal friction ¢ within the range 30 to 45°, depending
upon the size distribution and the shape of the constituent particles. Over the complete
range of soils, most combinations of values of ¢ and ¢, falling within the ranges mentioned
above for sands and clays, are known to occur.

2r

strength ratio
\
;v

0 — ] i — | I ] J I J 4
10 10 1 10* 10
rate of strain (percentage per minute)

Ficure 4. Relation between strength and rate of strain for (a) clay and (b) sand (data of D. W. Taylor
and A. Casagrande & W. L. Shannon, from Skempton & Bishop 1954). Strength at rate of
strain 19, per minute taken as standard.

Only a limited number of measurements of ¢ and ¢ have been made under dynamic
conditions. Of particular value are data reported by D. W. Taylor and by A. Casagrande
& W. L. Shannon (see Skempton & Bishop 1954) which show that, as the rate of strain
increases from zero to about 1:5s71; the strengths of clays and sands increase by factors of
about 2 and 1-2, respectively. These data are summarized in figure 4. The rates of strain
involved in camouflet motion are, at certain places and times, very much higher than
1-5s71. However, the discussion given in §7-1-6 shows that the average value, taken
over both space and time, is very much smaller than these maximum values, being of the
order of 5 to 10s~! for 11b. explosive charges (and still less for larger sizes), and it is feasible
to extrapolate strength data obtained under moderate transient loading conditions to rates
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of strain of this order of magnitude. Rate-of-strain effects in soils are not well understood,
but in clays the resistance to the flow of pore water is probably one reason for their existence.

‘The numerical values of cohesion and angle of internal friction adopted for the three
basic soil types are given in table 3.

TABLE 3. NUMERICAL VALUES OF PHYSICAL PARAMETERS FOR
BASIC TYPES OF IDEAL SOILS

S, frictionless, fully saturated clay; P, partly saturated clay or mixed soil; Z, cohesionless dry sand;
M, slightly frictional clay (compare soil § and see §7-1-7).

soil E (Lb./in2) ¢ (Lb./in2 ¢ (deg)  p, (Ib./ft.3)
s 1-5 x 105 20 0 125
P 8 x10t 15 10 125
z 2 x10* 0 30 100
MS 1-5 x 10 20 1 125

(¢) Density. Many accurate measurements of the densities of soil samples have been made.
For the most part, these give results in the range 100 to 140 1b./ft.3.

The numerical values of density adopted for the three basic soil types are given in table 3.

It is clear from the foregoing discussion that the choice of numerical values of physical
data for use in theoretical studies of the mechanics of camouflet motion is not simple.
However, so far as general information is concerned, the data proposed for the ideal
counterparts of the three basic types of natural soils are thought to be realistic. When
results for particular soils are required, the appropriate values of soil constants should be
carefully chosen with reference to whatever experimental data are available.

It should be noted finally that it is normal in soil mechanics to deal with excess stresses
above atmospheric pressure. Thus, quoted values of the cohesion of a soil generally refer
to the relative cohesion ¢* = ¢+-p,tan ¢ (see Cox et al. 1961, p. 33). Care must be taken in
any application of the present theory to ascertain whether this is in fact the case. To illu-
strate the differences which may arise from the use of ¢* in place of ¢, note that most soils
have values of ¢ and ¢ in the ranges 0 < ¢ < 20Lb./in.2 and 0 < ¢ < 40°, whereas
p, = 15Lb./in.2 approximately. The two terms in ¢* can therefore be of comparable
magnitude. For sands, when ¢ is very small and ¢ is about 40°, the second term p,tan ¢
predominates.

PART II. THEORETICAL MECHANICS OF IDEAL SOILS
5. SPHERICAL PLASTIC-ELASTIC FLOW

In this section a general theory of spherical plastic-elastic flow in ideal soils is developed
which provides the basis for the present treatment of camouflet formation under spherically
symmetric conditions. Subject to certain stated assumptions, which correspond to sim-
plifications of the true physical situation (see §§ 2-4 and 4), the analysis given is exact, being
based upon laws of conservation of mass and momentum and upon equations describing
plastic-elastic flow without fracture.

5:1. Preliminary assumptions

The camouflet is formed by the expansion of confined gases at high temperature and
pressure. In the numerical investigations given in later sections, the law of variation of

32 Vor. 256. A.
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gas pressure at the camouflet surface is assumed to be given by equations (4-1) to (4:3),
except in one special case discussed in § 6-1-3. The motion envisaged involves large plastic-
elastic deformations which take place rapidly under conditions of spherical symmetry in
an infinite region of homogeneous isotropic soil. The mechanical behaviour of the soil is
that of an ideal material which obeys Hooke’s law within the elastic range and Coulomb’s
criterion and associated flow rule at yield (although this latter condition is later modified)
under the restriction of perfectly plastic flow. The soil is accordingly characterized by five
physical constants: Young’s modulus E, Poisson’s ratio v, cohesion stress ¢, angle of internal
friction ¢ and initial density p, (see §4-2-2). It may be noted that Coulomb’s yield criterion
and associated flow rule for soils reduce, in the particular case of zero internal friction, to
Tresca’s yield condition and associated flow rule for ductile metals. Accordingly, the
present analysis applies to metals as well as to soils. However, the former case is the simpler,
and the values of corresponding physical constants for soils and metals are widely different,
so that the two cases are better treated separately. A detailed survey of work on the dynamic
expansion of spherical cavities in metals has been given by Hopkins (1960).

5:2. General equations

Let r be distance measured from the centre of the camouflet, a be the current camouflet
radius, and ¢ be time measured from the instant when the camouflet first starts to expand.
The soil is supposed initially to be at rest but not free from stress (see §5-4). All field
quantities are functions only of the independent variables r and ¢.

Large deformations of the material are involved, and here an Eulerian description of
the motion is chosen. The aim is to establish equations sufficient for the determination of
the distributions of displacement, velocity, stress and density at all times.

Let , 0, ¢ be spherical polar co-ordinates with origin at the centre of the camouflet.
The condition of spherical symmetry requires that only the radial velocity component v,
the principal components of stress g,, 7y and ¢4 = ¢, and the principal components of strain
rate é,, ¢, and é; = €, are not identically zero. In general, the usein this paper of a superior
dot, or of D/Dt¢, denotes differentiation following the motion of a material point, i.c.
F = DF/Dt = dF|dt-+v(dF/dr) for any given function F. However, it should be noted that
strictly speaking the use of the conventional notation ¢, ¢, é; (= ¢,) to denote strain rates
violates this definition, since these quantities are defined in their own right, by equations
(5:1), rather than as rates of change of other quantities. The strain tensor components
€, €95 €45 (= €5) do not explicitly appear in the analysis of this paper and are only defined
implicitly by equation (5-1) and the foregoing definition of the meaning of the superior dot.

The total strain rates are defined in terms of v by

¢, = 0v[dr, é,=u]r. (5-1)
The clastic strain rates ¢/ and ¢ arc assumed to be given by
Eé = 6,—2v5,, Eé) = (1—v) 6y—v0,. (5-2)

For obvious reasons, ideal materials satisfying these equations are said to be convective
Hookean (see also §7-2). The plastic strain rates é2 and ¢4 are then defined by

€0 =¢,—é  é—é—es. (5'3)
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For any particular material point, the state of stress at any time may be represented
by a point in a three-dimensional space in which the principal stresses ¢, 7,, 75 are taken as
rectangular Cartesian co-ordinates. In this so-called principal stress space, the Coulomb
yield surface has the shape of a pyramid, with vertex at the point V (¢ cot ¢, ¢ cot g, ccot ¢),
which intersects the plane ¢, = 0 in the irregular hexagon ABCDEF as shown in figure 3
(see Shield 1955 and Cox et al. 1961). The stress history of a material point may be
represented by a path in principal stress space, no part of which lies outside the yield surface.
If the representative stress point lies inside the yield surface, then any immediate stress
changes are elastic. If, on the other hand, this point lies on the yield surface, then such
changes are elastic when the stress path proceeds inwards from the yield surface, but other-
wise these are plastic. For definiteness, let ) = 0,, 05 = 0y, 75 = 05. Then, as 0 = 7, here, it
follows from the shape of the yield surface that plastic flow occurs only for stress states
represented by points on the lines passing through V and either one of the points C (-5, 0, 0)
and F (a, 0, 0), where

a/2¢ = cos ¢/(1+sing) = tan (37 —1¢),) (5+4)
b/2¢ = cos ¢/(1—sing) = tan (%71—#%;6)}

The Coulomb flow rule (i.e. the equations for the plastic strain rates) requires the vector with
components é#, é5, ¢4 to be directed along the outward normal to the yield surface at the
stress point in question. Denote the yield function by f{a,, 04, 7,4), the sign of f being so
chosen that f < 0 for stress states below yield and f = 0 for stress states at yield. The flow
rule is then _

éf:i%, ég::/l%, ég::/la%, (55)
where A(r, #) > 0 is a scalar function. It should be noted that the condition 1 > 0 is a con-
sequence of the more fundamental condition W? = 0, where W? is the plastic rate of work
per unit volume. In equations (5-5), fis to be interpreted appropriately (i.e. in the manner
proposed by Koiter 1953 and Prager 1953) at singular points. Since é§ = ¢§, a particular
combination of the plastic flow mechanisms for either one of the pairs of plastic régimes
(VBC, VCD) and (VEF, VFA) applies. The yield functions involved are

fVBc:—‘Tr/b‘F%/a”“l, Jvep = —0,/b+0pla—1,
Jver = 0 Ja—0aylb—1, frpy= o,Ja—0,/b—1.]

Then, from equations (5-5), remembering the restriction &} = ¢4, it follows that the required

flow rule is ‘ .
éf =—Afb, éf=¢f= A[2a for plastic régime VC, |
h=¢f

(5-6)

. : o (A = 0). (5:7)
éb = Ala, ¢ = —A/2b for plastic régime VF, J

The yield conditions and flow rules for both plastic régimes may be written more simply
in the single form
¢t — —\(w—sing)/2ccos g, ¢4 = éf = A(w+sing)/4ccos ¢,} i
7y = {(m—sing) 0,4 2ccos ¢}/ (w+sing), o4 = 0y,

where @ is equal to 41 or —1 according as plastic régime VC or VF applies. Since

= 0)9 (5'8>

@ = sgn (—éf) = sgn (&),
32-2
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it may be expected that plastic régimes VC and VF will apply to the expansion and con-
traction phases of motion, respectively.
The stress rate, strain rate relations and the yield condition are therefore

(Bv/ar) =0 ~2V0"0 Eﬁ(( ~sin¢)/20cos¢ }

f= w00—~{( —-sm¢) o +2€cos¢}/(l+wsm¢) =0,
{_0 ifeither f<0 or f=0 and f<01

1>0 if f=f=o. J

Equations (5-9) describe not only loading behaviour, but also unloading, which may
involve either purely elastic behaviour or reverse plastic flow.

The complete system of basic equations consists of equations (5-9) together with the
equations of motion and of conservation of mass, namely

~

(5:9)

with

do, | 2(0,—0p) dv v )

ar - ro p(52+ (9) (5-10)
() 2
pho ) =0, (5:11)
where p is the density. If the displacement undergone by a material point at radius r
and time £ 1 «, then v = «, and hence

du du -

U:(‘?Z/<l—*3’;). (') 12)
Equations (59, ,) and (5-11) show that

flp — blk— (Ltan g)/e, (513)

where p = —1(0,-+20,), and k = E/{3(1—2)} is the elastic bulk modulus. Since A = 0
prior to yield, equation (5-13) may be integrated to give

p = poexp{(p—I)/k—(Atan)/c}, (5:14)
where p, is the initial density and /7 is the initial value of p (see equations (5:27)). Thus,
since A > 0, plastic strain always produces a decrease in density unless ¢ = 0. This result
is not physically acceptable under conditions of continued plastic flow (see Jenike &
Shield 1959, and §5-7).

Now consider a material element of volume dr. The rate of performance of work on
this element exceeds the rate of increase of kinetic energy by Wdr, where

W =0,é+20,é, (5:15)

is the contribution to the rate of increase of internal energy per unit volume of the element
(see, for example, Jeffreys 1931, p. 75). In the theory of metal plasticity, it is customary
to treat I as the sum of the elastic strain energy rate We and the plastic strain energy rate
Wb = W—We. This theory also involves the assumption that W is the recoverable con-
tribution to the rate of increase of internal energy and that W? is the irrecoverable one, the
latter being associated with changes in heat and in atomic arrangement and motion (see Hill
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1950, p. 5). The validity of the above procedure, which is also implicit in the theory of soil
plasticity, has not been established from thermodynamical principles. Thus

W= e i,
where, from equations (5-2), (5:8,.,) and (5°9,),
> <5'] 6)

We = g,¢+ 20,65 == QJEI]% {02 —4vo,0,+2(1 V) ¢}},

Wb = ¢ b+420,6 =\ =0,

J

We and W? (here identical with 1) being the recoverable elastic and the irrecoverable
plastic components of the (excess) rate of work .

The parameter A may be entirely eliminated from the equations. First, for purely elastic
deformation, A = 0. Secondly, for plastic-elastic deformations (see equations (59, ,)),
A may be eliminated from the stress rate, strain rate relations to give

{1—2v+w(1+2v)sing}d,+2{1 —2—wsin ¢} d,
RN .
::E{(l—l—wsmqﬂ)%%—Z(l—wsm@f}. (5:17)

The necessary second equation follows from the condition of continued yield, which (see
cquation (5-9,)) requires that

by = (1—wsing) d,/(1 +wsing). ; (5-18)
Then, from equations (59, ,) and (5-18),

A = 4w cosng[{l —2v+w(1-+ 2v) sin ¢}§ —{1—-2v—wsin ¢}g§

x{(1—2v) (3—2wsing) + (3-+2v) sing}~1, (5-19)

so that \ is expressed in terms of v only, and the condition for non-negative plastic rate
of work is ” o
{w(1—2v) + (1+2v) sin ¢}; —{w(1—2v) —sin ¢}0—r = 0. (5-20)

It should be noted that the present analysis incorporates convective terms which are
neglected in the classical theory of infinitesimal elasticity. This procedure has the advantage
of removing certain inconsistencies between the equations governing elastic and plastic
deformations. Furthermore, it anticipates the fact that for ideal soils it is possible for finite
deformations to occur even within the elastic range (see tables 8 and 12). The description
of large elastic deformations in ideal soils is discussed in §§7-1-1 and 7-2.

5-3. Duscontinuity relations

The analysis of § 5-2 implicitly assumes certain conditions of continuity and differenti-
ability on the various field quantities such as stress and velocity. In fact it is assumed there
that only weak discontinuities occur. On a strong discontinuity surface, finite discontinuity
relations hold which may be regarded as replacing some of the differential equations there.

In the present analysis, any possible discontinuity surface must be spherical and concentric
with the camouflet surface. Let S denote such a spherical surface, say, r = r,(¢), and suppose
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that a discontinuity in at least one field quantity, say G(r,f), occurs across 5. This dis-

continuity is to be regarded as the limit of the variation of a continuous distribution across

a thin spherical shell enclosing S as this shell shrinks up about . The discontinuity in G

across S is defined as [G] — G+ —G-,

where G* — lim G(r, t).} (5-21)
r—>yr£0

The position of S will generally vary with the time, and this variation may be represented

by the curve C whose equation is g(r,d) = r—n,(t) = 0, (5-22)

drawn in a plane in which 7 and ¢ are taken as rectangular Cartesian co-ordinates.

It should be remarked that certain discontinuities in field quantities cannot be precisely
realized in real materials. Certain features of true physical behaviour, such as work-
hardening and rate-of-strain effects, tend to diffuse sharp discontinuities into continuous
transitions over narrow regions. For general discussions of discontinuity relations in the
mechanics of solids, see Prager (19554), Hill (1961) and Thomas (1961, chap. 2).

The arguments now developed are formal, the statement of analytical conditions suffi-
cient for the validity of the results being omitted.

The kinematical restriction on permissible discontinuities in the derivatives of a con-
tinuous field quantity is first considered. Suppose that G is continuous across §' throughout
some time interval. Let P,, P, P, be points, taken in order, on a small segment of C. Then
[Glp, = [G]p, = 0, and hence ([G]p,—[G]p,)/ds = [(Gp,—Gp,)[ds] = 0, where ds is the
distance P,P,. Proceeding to the limit as ds — 0, [dG/ds], = O or, from equation (5-22),

V[0G/or]+[0G[ot] = O,
where V =dr,/dt }
is the velocity of propagation of . Two different cases arise in connexion with equation
(5-23): (i) V = 0 when [0G/dt] = 0 but dG/dr may or may not be continuous, and (ii) ¥ + 0
when either [0G/dr] = 0 and [0G[0t] = 0 or [0G[dt] = — V[dG[or] = 0.

Even in ideal materials a number of continuity requirements on field quantities must
hold. First, in plastic-elastic flow without fracture,

(5-23)

[«] = 0. (5-24)

Secondly, from the laws of conservation of mass and of momentum,
[p(o— V)]~ 0, (5:25)
[o.—pv(v—V)] = 0. (5-26)

5-4. Initial and boundary conditions
It is supposed that initially (¢ = 0) the regionr > a(0) = a, is at rest and under a uniform
hydrostatic pressure 17, and that subsequently (¢ > 0) the known pressure P(a) acts on the
camouflet surface 7 = a(¢). Then the initial and boundary conditions are
u=v=0, 0,=0y=—1I, p=p, for r=a, at t=0,
0,=—P(a) at r=a(?), l

u,v >0, 0,0,—>—1II, p—>p, as r—> oo |

5-27
for ¢>0. ( )
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As stated in § 2-4, the value of IT is chosen to be the sum of atmospheric pressure p, and the
overburden pressure p,gk at the depth of the charge centre, i.e.

1T = p,+pogh. (5-28)

5:5. Statement of mathematical problem

The mathematical problem is to determine the quantities p, u, v, ¢,, 04 as functions of »
and ¢ subject to the field and constitutive equations (5-9) to (5-12), the discontinuity rela-
tions (5-24) to (5°26), the initial and boundary conditions (5-27), and the assumption that
the yield function is continuous at plastic-elastic boundaries.

Suppose that the variables p, «, v, 7,, 04 are known up to some time £ Then it is required
to determine the incremental changes dp, du, dv, dv,, doy occurring in the increment of time
d¢. In the case of a local elastic deformation, there are available the kinematic relation (5-12),
the two convective-Hookean stress rate, strain rate relations (59, ,) with 1 = 0, the equa-
tion of motion (5-10) and the equation of conservation of mass (5-11). In the case of a local
plastic deformation, there are available the equations (5-10) to (5-12) as before, together
with the single plastic-elastic relation between stress rate and strain rate (5-17) and the
yield condition on the stress rates (5-18). Thus, in each case, five equations are available for
the five unknowns. In principle, the problem is therefore a determinate one, but it should
be observed that the positions of any discontinuity surfaces are not known a priori, and
they must therefore be found as part of the solution. However, under spherically symmetric
conditions, and in simplified procedures based upon the neglect of wave propagation
effects (see §5-6), the determination of the nature of discontinuity surfaces presents no
difficulties. Finally, the solution must satisfy the conditions f< 0 or f= 0 and f < 0 in
clastically deforming regions, and f = f == 0 and W? > 0 in plastically deforming regions.

5:6. Simplified procedures

The present problem is one of non-linear plastic-elastic wave propagation. It might
reasonably be supposed that the analysis is essentially concerned with the integration of
a system of hyperbolic partial differential equations, the complexity of which obviously
renders a direct solution feasible only by purely numerical techniques. Here, however, the
complications due to wave propagation effects are avoided by using simplified procedures
based on one or other of two assumptions. First, in § 6, it is assumed that the plastic region
is incompressible and the elastic region is compressible, all inertial effects in the latter being
neglected. Secondly, in §7, the entire soil region is assumed incompressible. Motion
governed by either of these assumptions will be described here by the term isochronous.
These procedures enable a more far-reaching analytical treatment of the basic equations
to be made.

Taylor and Penney (1954, private communication), whose analysis is confined to the
first expansion phase of camouflet motion, assume that the material in the plastic region is
incompressible, and that the material in the elastic region is in equilibrium. These assump-
tions lead to mathematical inconsistencies at the plastic-elastic boundary, as observed by
E. P. Hicks (1954, private communication). In the present work, following the earlier
approach proposed by Hill (1948), these inconsistencies, which arise from the violation of
conditions (5-25) and (5:26) at the plastic-elastic boundary, are avoided by assuming
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that the material is everywhere incompressible and including inertial effects in both the
plastic and elastic regions. The form of the governing equations of completely incom-
pressible motion is derived in the next section, but the development of detailed analysis
and presentation of numerical values is deferred to § 7.

5-7. Equations for incompressible flow

Under the assumption of completely incompressible motion,
= p, = constant, (5-29)

and the equation of conservation of mass (5-11) now shows that d(+%)/dr = 0. The particle
velocity is therefore given by v = a2, (5-30)
where 4 is the velocity of the camouflet surface.

The strain rates are now ¢ — —2a%fr, ¢, - a%ifr’, (5-31)

and the equation of motion (5:10) becomes

do,

2 2 2 452
o) a*i -+ 2ad aa} (5-32)

( —
T
Since assumption (5-29) applies to both elastic and plastic deformation, it is necessary first
to put » = ¥ and then, in order to achieve consistency with equation (5-14), to set ¢ = 0 in
the Coulomb flow rule (5-8, ,). Thus the stress rate, strain rate relations and yield condition

are taken to be
E(0v)0r) = ¢.— ¢y — Ewl |2,

E(v]r) = L(6,—0,) + Ew [4c,
JS=wo,—{(w—sing) o,+2ccos g}/(1 +wsin @) = 0, (5-33)

p{:o ifeither f<0 or f=0 and f<0,}
>0 if f—f=o. )

The relation between the fundamental condition W? = 0 and the derived condition A = 0
is discussed later (see remarks following equations (5-36)).

Chadwick (1959) has shown that the effect of elastic compressibility is small when a
camouflet is expanded quasi-statically, but no corresponding investigation has been made
for dynamic expansion. The use of a non-associated flow rule represents a departure from
current methods of plasticity theory. There is some fundamental evidence supporting the
admissibility of associated flow rules for metals, but not for soils. At large plastic strain,
when A is large, equation (5-14) implies considerable reductions in p if ¢ is non-zero. This
result is physically unacceptable because soils exhibit only limited dilatancy, and the
associated density changes are relatively small. The modified flow rule is therefore physic-
ally more realistic under conditions of large strain. However, when v = } the longitudinal
elastic wave velocity is infinite and some assessment of the error that this incurs needs
to be made.

For convenience, the forms taken by certain of the equations in §5-2 under conditions
of incompressible flow are given below.

with
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Equation (5:15) still holds, but ¢ and W? are now given by
i, 1D ; A
We= g0 Wr=4 (0,~0,). (5:34)

It is no longer possible or necessary to eliminate A from the stress rate, strain rate equations,
asin equation (5-17), since equations (5-33, ,) are dependent and serve only to determine A.
It should be noted from the yield condition (5-33;) that

oy—0, = 2w(ccosp—a,sing)/(1+wsin @). (5-35)
Thus Wt = A(cos ¢—sin @, /c) /(1 +wsin @), (5-36)
and hence W? =0 implies that 1>0 only if o, < ccotg. However, this restriction has
already been made in relation to the yield surface defined by equations (4-5), and the
equivalence of the two conditions is therefore established.

The condition for non-negative plastic rate of work is not now expressible in terms of
v only, but, with use of equations (5:30), (5-33,) and (5-35), it can be written as

2a%d 1 D
5 (0,—09) — 57 7, 1(0,— )%} = 0. (5-37)
7 2F D¢

Equations (5-24) to (5-26) simplify to

[u] =0, [v]=0, [0,]=0, (538)
and, since the yield function is assumed to be continuous across a plastic-elastic boundary,
[o5] = 0. (5-39)

Finally, the initial and boundary conditions (5-27) remain unaltered.

PART III. MODELS OF CAMOUFLET MOTION
6. POINT SOURCE MODELS

In this section, the theory of spherical plastic-elastic flow in ideal soils, developed in § 5,
is applied to a point source model of camouflet motion. For such a model the given energy
release &,,,, is concentrated at a single point. A comparison between numerical values
obtained for point source and spherical charge models of explosions is made in § 7-1-7.

The discussion now proceeds according to the assumptions made in regard to isochronous
motion. In §6-1, the plastic region is assumed to be incompressible, and inertial effects
are neglected in the elastic region, as proposed by Taylor and Penney (1954, private
communication) in their similarity theory of the first expansion phase. Hicks’s (1954,
private communication) modification of the Penney-Taylor theory is discussed in § 6-2.
This theory includes inertial effects in the elastic region, now taken to be incompressible.

The analysis given in this section relates only to the first expansion phase of the motion.
However, a preliminary argument is applied to the discussion of the subsequent pulsa-
tions, precise discussion being deferred to §§7-1-2 and 7-1-3.

33 VoL. 256. A.
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6:1. Penney—Taylor similarity theory

The theory of spherically symmetric camouflet formation due to Taylor and Penney is
developed here in its original form, save for certain extensions and corrections concerning
the law of variation of the pressure of the explosion products and the nature of the energy
partition. The analysis of camouflet formation was developed by Taylor for quasi-static
deformation and extended by Penney to dynamic deformation. The theory has the character-
istic feature of geometrical similarity, so that, in particular, the radius of the plastic-elastic
boundary is a constant multiple of the radius of the expanding camouflet surface. It should
be noted, however, that the condition of geometrical similarity, which is a structural feature
of the theory and not a consequence of dimensional arguments, ceases to apply at the end
of the first expansion phase. The present model provides a useful approximation to the
more elaborate solution obtained in § 7 when a sufficiently large expansion occurs, although,
since the camouflet is assumed to expand from zero radius, the problem of the initiation of
plastic flow is indeterminate.

Let a(t) and b(¢) be the radii of the camouflet surface and the plastic-elastic boundary
respectively (see figure 1). Thus the region a < r < b is deforming plastically, the boundary
r = b is at yield, and the region r > b is deforming elastically.

6-1-1. First expansion phase

From equation (5'9;), setting @ = 1 for expansion conditions, the yield condition may
be written in the form (14a) 0)—0,— ¥ = 0, (61)

where Y =2ccos¢/(1—sing), = 2sing/(1—sing) (6-2)

are respectively referred to as the yield strength and friction coefficient of the soil. Equation
(6:1) was used by Taylor and Penney, but they did not derive equations (6-2) showing the
dependence of ¥ and a upon the soil parameters ¢ and ¢.

In the elastic region, inertial effects are neglected, but compressibility effects are included.
Let the strain be defined to be zero in the initial state. Then, taking Hooke’s law to connect
changes of stress and strain, it follows that

E(du)or) = a,+ 11— 2v(0,+ II),
E(ulr) = (1) (0, 1) (o, + 1),
do,  2(0,—a,)

Zrg Z\NTr 00

ar r

It should be noted that, as mentioned above, the point source model due to Taylor and
Penney is developed here essentially in its original form. For this reason Hooke’s law is used
in its normal form, relating stresses and strains, rather than in its convective form, equation
(5-2). Since the law is only used in the elastic region where, according to the Penney-
Taylor similarity theory, only small strains occur, no significant error is thereby incurred.

With the use of the boundary conditions (5-27), the appropriate solution of equations

(6-3) is 0, = — IT—4uC)%,
0y =—II+2uClr%,}  (r > b), (6-4)
u = CJr?,

(6-3)
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where C'is a function of time determined below. Although the material is not assumed to
be incompressible in the elastic region, the form of this solution shows that no density
changes occur there (see equation (5:14)). Since the material in the plastic region is assumed
to be incompressible and ¢, = 0, the condition of conservation of mass gives 7> —7§ = a°,
where 7, is the initial radius of the material point currently at radius . In particular,
when 7 = b and 7, = b— (4),-,, then
()= ~ @*[30%, (6:5)
where (z),-, is assumed small. From equations (6-4,) and (6-5) it therefore follows that
C = %ds. (6:6)
Since the material at the plastic-elastic boundary is at yield, equations (6-1), (64, ,)
and (6-6) give (b/a)® = 2u(8+a) {3(Y+all)} = constant = n3, say, (6-7)
where, under practical conditions, # is of the order of 10. Thus the radius of the plastic-
clastic boundary is a constant multiple 7 of the radius of the camouflet surface. Also, since

—(0,)r=ps0 = 2Y+3(1 +a) 11}/ (3 +), (6:8)

the radial (and tangential) stresses at the plastic-elastic boundary are constant.
In the plastic region, the equation of motion (5-32) holds and, with use of the yield
condition (6-1), it follows that ¢, satisfies the equation

do, 2a 2y a%i +-2aa? 2a4d2} )
or (1—|—oc)r0r (14« r+’00{ A (6:9)
— X_ ] 42d+20a2 d4d —2a/(l+oc) .
Hence = Po(1 }—ac){ (=a)r ~@ta)r }+F(t}r (6-10)

where F(t) is a disposable function. Since the density is constant, it follows from equations
(5:25) and (5'26) that g, is continuous at 7 = 5. Hence, with the use of equation (6-8),
F(¢) is determined, and then

Y a%i+2ad®  a*d® }
Ir= ﬂ_p(’(l +a) { A—a)r (24+a)rt
na\ 2+ r3(1+a) (Y+all) ad + 24> a? } )
{r} [ a(3+a) pol1+a ){( —a)n (2_|_a)n4:| (a<r<b). (6:11)
The particular cases « = 0 and 1, corresponding to ¢ = 0 (frictionless material) and ¢ ~ 193°,
are treated by finding the limiting form of equation (6:11) as « — 0 and 1, respectively.
These results are not set down here, but it may be noted that logarithmic terms appear.
The relation between the camouflet pressure P(a) and the camouflet radius a, which follows
at once from equation (6-11), is

L ==
ad-+2a* dz} Y

+po(1+a ){ T2 ova o (612

P = nZa/(l—(—zx)[ (

This equation will be referred to as Penney’s camouflet equation. If P(a) is known, equation
(6-12) is a non-linear second-order ordinary differential equation for a(¢) which is to be
33-2


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

270 P. CHADWICK, A.D. COX AND H. G. HOPKINS

integrated subject to suitable initial conditions. The substitution of this solution into the
other equations completes the analysis. The numerical integration of Penney’s camouflet
equation is discussed in § 6-1-3, and illustrative numerical results are given in § 6-1-4.

6-1-2. First contraction phase and subsequent pulsations

Since, in general, @ == 0 at the end of the first expansion phase, further motion will occur.
Detailed analysis is required to determine the exact nature of this motion and, in particular,
the change in the camouflet radius during the first contraction phase. It is useful to
anticipate here certain results which are obtained in §7-1. The further motion of the
camouflet varies with the type of ideal soil and also with the value of the initial uniform
hydrostatic pressure /Z. In general, for an ideal soil exhibiting any appreciable internal
friction, it appears that further changes in the camouflet radius are small. For frictionless
ideal soils, the amplitude of motion during the first contraction phase increases markedly
with I7. Ultimately, plastic deformation will cease and any further motion then consists
of elastic pulsations.

The first contraction phase involves preliminary elastic motion, generally followed by
further plastic-elastic motion. The yield condition, now given by equation (5-9,) with
w=—1,is (1+a)o,—0o,— Y = 0, (6-13)
where the soil parameters ¥ and o are defined in equations (6-2). Because of the elastic
unloading, a repetition of the argument of §6-1-1, with interchange of equations (6-1)
and (6-13), would afford no basis for linking the states of motion in the first expansion and
contraction phases, and a complete plastic-elastic analysis of the first contraction phase is
hence unavoidable. However, in certain cases it can be shown, by appeal to energy con-
siderations, that the motion of the camouflet surface subsequent to the first expansion phase
is small. Consider the energy partition at the end of the first expansion phase. The total
kinetic energy is zero. In the plastic region, the plastic work and the elastic strain energy
can be evaluated from equations (5-16), care being taken to change v from its actual
value to } as material becomes plastic. The remaining part of the work done by the
explosion products in expanding the camouflet is stored reversibly as elastic strain energy
in the elastic region and, due to work done against the uniform hydrostatic pressure, as
potential energy at infinity. Let the radii of the camouflet surface and the plastic-elastic
boundary at the end of the first expansion phase (when ¢ = ¢,) be 4, and ,. Then the total
work done on the final elastic region by forces at the final plastic-elastic boundary is

h 4ua’\ a Y+all
2 2 3
471640( T0) =, dt_4ﬂbj (17+ 3b3)bZda 371a1=11+ T g }

with use of equations (5-30), (6:4,), (6:6) and (6-7). The total work done on the same region
by the stress at infinity is

(6-14)

4 3 2
1im{4nR2f0 (0,0), Rdt} hm{4nR2fO(-—H—~%%)%2da}_ 4l (6415)

R—>w R—>w
with use of equations (5-30), (6-4,) and (6-6). Hence, from equations (6-14) and (6-15),
the total strain energy stored in the elastic region is

o s Y+all

(6:16)
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and potential energy of amount snad I1 (6-17)

is stored at infinity. The work done by the camouflet pressure is

ay
477f a*P(a)da = %mai P,
0

. (6:18)
where P, :lf ‘P(V)dv
o
is the mean value of P, regarded as a function of camouflet volume V, during the first
expansion phase. Now if
b el o

then, assuming that the elastic strain energies of the plastic and elastic regions are of the
same order of magnitude, the sum of the recoverable strain energy and the potential energy
at infinity is much smaller than the work done by the camouflet pressure. Therefore this
work must be only slightly greater than the irrecoverable plastic work. In this case the
energy available to enforce compression of the gaseous explosion products is small, so that
the amplitude of any further motion must be small. It seems, however, that the strong
inequality (6:19) does not hold in most practical situations and therefore the above argu-
ment is generally inconclusive.

6-1-3. Numerical procedures
Penney’s camouflet equation can be written in the form

l"r(l

po(aa—l—Za {1—n-0- a)/(l*a)}___:::_a'oo 2{1 — 2@/ +a)

-I—(H-l— Y){ ;105 20/(1+0) __ 1;+H P=0. (6-20)
It is convenient to reduce equation (6:20) to non-dimensional form. Let the velocity ¢,
be defined by 2 — Elp,, (6-21)

and introduce a non-dimensional time 7 and distance x defined by

T =¢yllay, x=alay, (6-22)
where g, is an arbitrary length specified later. Then equation (6-20) reduces to
Kixx"+2(K,—K,) "2+ K;— 0(x) = 0, (6-23)
where 1 1+ “{ 1— -/}
K, — l —I—oc s {1 —p22+ /1), S (6-24)
_ Y\(,1+a 20/(1+a) }
are constants, Ox) = ME:JJ, , (6-25)

and the primes denote differentiation with respect to 7.
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Initially, # = 0 and a = 0, i.e. 7 = 0 and x = 0. If xx” is zero when 7 = 0, then equation
(6-23) shows that

/ 0, — K, }%
¥ =19 "3 when 7-=0, 6-26
oK, 1) (620
where 0, = 0(0). It can be shown that if » > 1, then K, —K, > 0. Thus the initial value
of »” will be real if Y\ ( 14ba
P> IT+ (17+ —) {3 L2 s 1) (6:27)
o 3+a

and this minimum value of F; is seen from equation (6-20) to be the pressure needed to
expand the camouflet quasi-statically.

Once O(x) is known, equation (6-23) can be integrated, subject to the known initial con-
ditions, in order to determine x as a function of 7. The discussion of the camouflet pressure
given in § 4-1 must now be extended to cover the case when the energy release &, is con-
fined to a single point, the length ¢, in equation (4-1) then being undefined. A plausible
way of overcoming this difficulty is to choose @, in equations (4-1) and (6-22) to be equal
to the radius of a spherical charge which has an effective energy release &,,,, equal to that
of the point source, and then to assume that equation (4-1) is valid in the range a = 0. How-
ever, if this is done, no solution of equation (6-23) can be obtained because, due to the
behaviour of ®(x) near x = 0, various integrals diverge. This procedure istherefore valueless.
From thewide range of mathematically acceptable assumptions which can be made, two will
be chosen here, being referred to as assumptions A and B. The numerical values given later
show that the main features of camouflet motion are not critically dependent upon the
precise assumptions made.

Assumption A is that the camouflet pressure has a constant value P, for a < a, where q,

is the radius of a spherical charge having effective energy release &,,,, . The law of variation
of P(a) when a > a, is supposed to be given by equations (4-1) with F, replaced by P,. Thus
P if 0<ala, <1,
P(a) = {P(alay)™® if 1< ala, <1530, (6-28)
Py(1-530) 7519 (afay)—381  if aja, > 1-530.
It is found, on equating the energy release to &, asin §4-1, that
P, =1-991 x 10° Lb./in.2. (6-29)
The growth of the camouflet up to radius g, (i.e. for 0 < x << 1) is governed by the equation
Kixx"4+2(K,—K,) "2+ K;— 0, = 0, (6-30)

where ® == (P,— II)/E is a constant. This equation can be written as
d , 2
a{964(1—1(2/1(1),6 2 — X (O, — K) x3- 4K,

and, on integration subject to the initial condition (6-26), it follows that

1

, Oy — K, }2
X = ks 631

ok, £ 3
Thus the camouflet expands at constant velocity. Since ¥ = 0 when 7 = 0, the complete
solution of equation (6-30) is therefore

X = lé(—f(::m} 7. (6-32)
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From equation (6-32), the time taken for the camouflet to expand to radius q, (x = 1) is
ao{Q(Kl_Kz)f
PN | b il Bt 72

= o (6-33)

0y — K,

If #, is now taken as a new time-origin, the new initial conditions for the integration of
equation (6-23) are

0,—K, |
x=1, x = {~i—3} when 7= 0. 6:34
2(K,—Ky) (654

The growth of the camouflet beyond radius a, is governed by equations (6:23) and (6-34),
the camouflet pressure being given by equations (6:28) and (6-29).

Assumption B is that a = ay and ¢ = 0 at ¢t = 0, and that P(a) is given by equations (4-1)
to (4-3), where a, is again the radius of a spherical charge having effective energy release
&eam.- Although this assumption cannot be reconciled with the analysis underlying equation
(6-12), it involves no mathematical inconsistencies and has the virtue of being sufficiently
different from assumption 4 to lend some weight to the conclusion that the solution of
equation (6-12) is not too critically dependent upon the precise form of law of variation of
gas pressure P(a).

Assumptions 4 and B areseen to differ only in respect of the initial velocity of the camouflet
surface and the constant of proportionality for the relation between camouflet pressure
and radius, and the procedure for the numerical integration of equation (6-12) is the same
in both cases.

It is found convenient to replace equation (6-23) by a set of simultaneous first-order
differential equations. Thus, define the variables

Ko =T == Cytfay,

X, =X = aja,,

;o (6:35)
g =X = 0/609
%3 = {P(a) — I}/ E = O(x),
which satisfy the equations
dxy/d7 =1, ‘
dx,/dr = x.,
Jd7 = x, 2 (o0
dx,/dr = {x; — K3 —2(K, — K,) x2}/K1x1,‘
dx;/dr = %, 0 (x,).

The appropriate initial conditions are then

X =0, %=1, x,={(0y—K;)/2(K,—~K,)}} x5, = (P,—II)/E for assumption 4, (6-37)
X% =0, %=1, % =0, x;=(F—II)/E for assumption B. (6-38)

Although the systems of equations (6-36), (6:37) and (6-36), (6-38) are simple, they serve

to illustrate the procedure adopted for the integration of camouflet equations throughout

this paper, the method used being a fourth-order Runge-Kutta process due to Gill

(1951). Numerical values are given in § 6-1-4.
It may be noted that, for frictionless ideal soils (@ = 0), equations (6:24) become

Ki=1-n"1, K,=11-n"%), K;=4%(1+38lnn)n3. (6-39)
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Penney’s camouflet equation may be written in the general form

P = A+ Bai+Cé2, (6-40)

6-40) is aa®’®-1 and hence, if @ = ¢ = 0 when { = 0 are taken as initial conditions, it
bl 2

follows that " A
f P(a) a®m-1dq — %Ba20/3(5+d2). (6-41)
0

Thus é is determined, and a second quadrature would determine a. Setting d = 0 (a =+0)
in equation (6-41), the camouflet radius @, at the end of the first expansion phase is

given implicitly by f AB

a
P(a) @91 da — 52 a1, (6-42)

0
An important special case arises when 3B = 2C (i.e. K, = 4K,). Except for a factor 4,
the left-hand side of equation (6-42) is then recognized as the work done by the camouflet
pressure during the first expansion phase, and if W, is the work done by the camouflet
pressure in expanding the camouflet to radius a, then equations (6-41) and (6-42) simplify to

(1/4m) W, (a) = a*(34+§Bd?), (6-43)
(1/4m) W, (a)) = 34aj. (6-44)

Now if P(a;) = p,, then W, (a;) ® &, and equation (6-44) yields the approximation
a; = (36.,m [4mA)*, (6:45)

The duration of the first expansion phase, however, depends upon the rafe at which work is
done by the camouflet pressure as well as upon &,,, , and no corresponding approximate
formula can be obtained.

For any given soil, the condition K, = 4K, will, in general, be satisfied at only one par-
ticular depth of charge burial. However, it is of more interest that this condition is approxi-
mately satisfied for a frictionless soil at all depths, provided only that n is large (see equations
(6-39)). In this case, equation (6-45) can be written explicitly in the form

3 2FE\\ ¢
Sy e oo

Hill (1948), discussing camouflet formation in soils (see §2-2), and Hunter (1958), dis-
cussing cavity formation in metals, have obtained results similar to equation (6-46).

6-1-4. Numerical values

Asstated above, the camouflet equation (6-23) has been integrated subject to two different
sets of initial conditions. Thus, the computer program CAM 1 A assumes that conditions
(6:37) apply at ¢ = 0 and that P(a) is given by equations (6-28) and (6:29), and program
CAM 1 B assumes that conditions (6-38) apply at ¢ = 0 and that P(a) is given by equations
(4-1) to (4-3). Numerical values are given in table 4 for the three ideal soils S, P and Z
(see §4-2-3), and for a depth of charge burial of 100{t. Values of v for these ideal soils were
not assigned in §4-2-3: it is assumed here for simplicity that v = } in each case, so that
4= 3E. Tt is seen that the numerical values given by the two programs are in good
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agreement. In addition to these large-scale features of the motion, the programs compute
x as a function of 7. These results are presented in graphical form in figure 5, where, for
comparison, results derived from the theory developed in § 7-1 are also displayed. Detailed
discussion of numerical values is deferred to §7-1-7.

12r

)

ala,

(ii)

[e 8]
1

| ! | | | | J
0 20 60 100 O 20 40 60

Cotlay
Ficure 5. Variation of camouflet radius with time during first expansion phase for explosions at
depth 100 ft. in soils (i) S, (ii) P and (iii) Z. (4) point source model, assumption 4, (B) point
source model, assumption B and (C) spherical charge model.

It should be noted that, in view of the apparently quite unambiguous and relatively simple
features of the plastic zones predicted by the models of camouflet formation discussed in
this paper, a direct numerical check on the condition of non-negative plastic rate of work
has not been undertaken. The condition is known to be satisfied in related problems and,
as it is tedious to check, it has been assumed to be true here.

The numerical values in table 4 are presented in dimensionless form. In order to obtain
results for a given energy release &, it is necessary first to determine the radius a, of the equi-
valent spherical charge. Then, to determine dimensional values of quantities, all dimen-
sionless lengths and times are multiplied by @, and a,/c,, respectively. There is, however,
an important proviso to be noted. All the present results are based upon an assumed law
of variation of ®(x) which must be the same for all values of 4. This means that the pressure
IT is to be treated as constant, which implies that the depth of charge burial z does not
change. Thus the family of results corresponding to a range of values of ¢, pertains to charges

34 VoL. 256. A.
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of different sizes all detonated at the same depth. Accordingly, the present dimensionless
formulation of the problem, although apparently conforming to Hopkinson’s size-scaling
law, does not in fact do so, since complete geometrical similarity is not preserved.

TABLE 4. NUMERICAL VALUES FOR POINT SOURCE MODELS
Depth of charge burial, 100 ft.

7, = ¢t /a,, scaled time to end of first expansion phase.

a,/a,, scaled radius of camouflet surface at end of first expansion phase.

n, constant quotient of radii of plastic-elastic boundary and camouflet surface.

A, B refer to calculations made under assumptions 4 and B (for the former, 7, then includes time of initial
expansion under constant pressure).

soil assumption T, a,/a, n
S A4 199-5 10-55 13-57
B 198-7 10-42 13-57
P 4 76-64 6-773 9-187
B 79-27 6-919 9-187
z 4 28-66 5422 5092
B 29-90 5-590 5-092

Furthermore, it follows that 4, cannot realistically be increased without limit, because the
plastic-elastic boundary must not extend to ground level if the assumed condition of
spherical symmetry is to be reasonably well met (sce §2-4). As g, is increased, b increases
but & remains constant. This implies a maximum value for ¢, beyond which the theory
cannot be expected to apply. Table 5 gives some numerical values for this restriction
expressed in terms of charge mass. These values are such that for a charge of the mass shown,
the radius of the plastic-elastic boundary at the end of the first expansion phase is just equal
to the depth of charge burial, 100ft. In §7-1-7 this question is further discussed and
more general results derived (see table 11).

TABLE 5. RESTRICTION ON CHARGE MASS
Depth of charge burial, 100 ft.

soil maximum mass (Ib.)
S 1-4 x 102
P 1-6 x 103
z 1-8 x 104

6:2. Other theories

The Penney—Taylor theory of explosions in soils has the distinctive feature of geometrical
similarity. This is a direct consequence of the fact that inertial terms are neglected in the
elastic region, whether or not incompressibility is also assumed. Hicks (1954, private com-
munication) has modified the Penney-Taylor theory by including these inertial terms. In
order to eliminate effects due to wave propagation, it is then necessary to assume incom-
pressibility throughout the soil. Two simultaneous non-linear second-order ordinary
differential equations follow for the radii a(¢) and 4(#). These camouflet equations contain
terms, involving products of the soil friction coeflicient with the inertial stresses, which
result in the monotonic increase, as the camouflet expands, of the quotient 4/a. Except when
the material is frictionless, the complexity of Hicks’s camouflet equations approaches that
of the equations obtained in §7-1-1 for spherical charge models of explosions, and the
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similarity feature present in the Penney-Taylor theory is lost. The theory of § 7, which is
not restricted to point source models, is therefore preferable to Hicks’s theory, although
the latter does have a useful application in the simpler case of frictionless materials.

7. SPHERICAL CHARGE MODELS

In this section the general theory of spherical plastic-elastic flow in ideal soils, developed
in § 5 and specialized to incompressible flow in § 5-7, is applied to a spherical charge model
of camouflet motion. Attention is confined to the case in which the material is incom-
pressible, and inertial effects are everywhere included. Alternative theories are discussed
in §7-3.

7-1. Incompressible flow theory

Let ¢, (: =1,2,...) be the durations of successive expansion and contraction phases.

Let t, =t ,+¢, , where ¢, , and ¢, , are respectively the durations of the elastic and the

i,e

plastic-elastic parts of the :th phase.

7-1-1. First expansion phase

In the first expansion phase, the mechanical behaviour is elastic for a time ¢, , and is
plastic-elastic for a further time #, ,. It is normally expected that ¢; , < ¢, ,.

(a) Elastic deformations. Initially, the motion involves only elastic deformation of the
soil surrounding the expanding camouflet surface. The deformation is governed by the
equation of motion (5-32) and the convective-Hookean relations (5-33, ,) in which 1 is
to be taken as zero. For convenience, these equations are restated here in the forms

do, 2(o,—0,)  (a?d-+2ad? 2a4d2} )
Doy 2Ot p (60X I8 BT, (1)
d,—0d, = 2Ea%[r’. (7-2)
Now define X =g0y—0,—2EIn (r/a;). (7-3)

Then, since 7 = a%i/r?, equation (7-2) gives

2 =0. (7-4)
Thus, X' is constant for any material point during elastic deformation. Now at ¢ = 0,
o, = 0, on physical grounds and the co-ordinate of a material point, currently at radius 7,
is r—u. Thus initially X = —2FIn{(r—u)/a,}, and hence
0y—0,=—2EIn(1—ufr) (=0). (7-5)
It follows from the incompressibility condition that
r—a® = (r—u)®—aj, (7-6)
and equation (7-5) now becomes

3_ .3
2F {l_a a:

0, =0 =5 In 3 (7-7)
The elimination of ¢, between equations (7-1) and (7-7) gives the following differential

equation for 7,, do. AE

ad— a%} _ (a%i+-2ad® 2a4d2}
'5; —3*;111{1— 7'3 ——po{ 72 — 7'5 . (7 8)

34-2
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Now introduce the dilogarithm
Li, () :—f’;lnu—g)d—gg. (7-9)

The definition (7-9) is the one suggested by Lewin (1958, p. 1) who has given a detailed
discussion of the properties of this function. Of the numerous functional relations satisfied
by the dilogarithm, note should be taken at this stage of Landen’s result

Liy {x/(x— 1)}+Li, ff = =32 (1—2) (x<1) (7:10)

(see Lewin 1958, p. 5), which will be used in the later analysis of this section.
The solution of equation (7-8) satisfying the stress boundary condition at infinity (equa-
tions (5-27)) can now be stated in the form

4F . (a3 —a} a%d+2aa’>  a*a?
(80— [EE2E ). (711)

== H—? L1, r r 2rt
Finally, with the use of the stress boundary condition at the camouflet surface (equations
(5-27)), a 1s found to satisfy the equation

3
P(@) = T+ Lig[1— B+ py(ad+3a2) (7-12)

The three terms on the right-hand side of equation (7:12) correspond in turn to uniform
hydrostatic pressure, elastic stress and inertial stress. It may be noted that, when £ = 0,
equation (7-12) applies to underwater bubble motion. Integration of equation (7-12)
shows that

“ 2 LT3 3 1, asa2 BT s aj 37 a
fa P(a) ®da — 111(a*— a3) + kp, a¥a +-2—7[a le{}~5§}+a0L12{l—a~g}]. (7-13)

Now, except for a factor 4, the left-hand side of equation (7-13) represents the work done
by the camouflet pressure, and the terms on the right-hand side represent in turn the poten-
tial energy stored at infinity, and the kinetic energy and the elastic strain energy of the soil.
Equation (7-13) must be integrated numerically in order to determine a(¢). The distribu-
tions of stress and velocity are then found from previous equations.

The above analysis applies only until the yield condition is first satisfied. Now, from
equation (7-5), o,— 0, > 0, whence the appropriate yield condition is obtained by taking
@ = 1 in equation (5-9,) and is '

(14+a)oy—0a,—Y =0, (7-14)

where Y =2ccos¢/(1—sing), «=2sing/(1—sing). ‘ (7-15)

Plastic yield occurs first at the camouflet surface when, by definition, t = ¢, ,anda = q,_,.
Then, from equations (7-7) and (7-14), setting » = a and ¢, = — P(a), it follows that q, ,
is given b

given by 2E(1+0)In (4, /a;) = Y+aP(a, ). (7-16)
In general, Y/E < 1, and in the simpler and more familiar situation of a frictionless material
(x = 0), (a;, ./a,) —1 is therefore small. However, in the general case this need not be so,
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since P(a; ,) > ¥, and, even for quite small values of a, the deformations can no longer be
considered small. Tllustrative numerical values are given in table 8, and further discussion
of this question is given in § 7-2.

(b) Plastic-elastic deformation. When the camouflet radius increases beyond 4, ,, a plastic
region spreads outwards from the camouflet surface. Separate analyses for the elastic and
plastic regions are now required, with appropriate matching of results at the plastic-
elastic boundary. Attime ¢ (> ¢, ,), the radius of the plastic-elastic boundary will be denoted
by &(¢), so that the regions a(t) < r < b(¢) and r > b(f) are plastic and elastic, respectively,
and the boundary r = b(¢) is at yield (see figure 1).

(1) The elastic region (r > b). In the elastic region, equations (7-1) to (7-8) and (7-11)
still hold, and so

- 2F {1_a3—a3}

O0p—0, w7'*‘5‘].1’1 /3

(r>0b(1).  (717)

4FE . (a®*—a} a*d+2aa®  a*a?®
o

(ii) The plastic region (a <r < b). In the plastic region, the yield condition (7-14) is
tisfied, and
TS A gy = (w0, — 1)1 a) (al) <7 < b)), (718)
which, when substituted into the equation of motion (7-1), gives the differential equation

o o
Py 2 27 a2 iy <7 <b). (719)

r2 rd

Hence, with use of the condition at the camouflet surface (equations (5-27)), it follows on
integration of equation (7-19) that

2a/(1+a) 2a/(1+0)
o —=3_ {P(a) +—Z} {5‘} + %f—z po (adi +242) U‘f} l]

a a)\r s

l—l—OC . a 2a/(1+a) a 4
*'2":!«—06,00612[{;) — :;} :l (a(t) <r< b(t)). (7'20)
Here and elsewhere, results for the special cases « = 0 (¢ = 0) and & =1 (¢ ~ 194°) are
derived by a limiting process. These results are not given here, but it may be noted that
logarithmic terms are involved.

The solution must now be completed by the matching of results at the plastic-elastic

and (5-39)), and it may then be shown that a(f) and 4(¢) satisfy the two simultaneous non-
linear differential equations
a}2oc/(l+a) oOF

(Y+aP(a)) {5 +2 (142) 1n{1_

dB—dg l+0¢ . o a 20/(1+a) a
5 »}Aal_a/}o(aa—l—Qa )[{5} -3

I—I—OC . a 2a/(1+a) 4
ragamd| i =0

2F ad—a 20.. (a3—a} a’d+-2aa’  a%a?
Y—I—acIY—I——?;—[(l +a) ln{l———o} +5Li, {~—5§—0}}—|—ap0{~~b——~~2ﬁb4} =0. (7-22)
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The initial conditions for the integration of equations (7-21) and (7-22) are
a=a, @¢=4d, b=a=a,6 when t=1 . (7-23)
The first expansion phase terminates at time ¢ = ¢, given by
a(t) = 0. (7-24)

7-1-2. Furst contraction phase

Owing to the assumed incompressibility of the material, the motion everywhere reverses
direction at time ¢ = ¢;. The further motion will initially involve elastic unloading of the
elastic and plastic regions present at the end of the first expansion phase. Thus, for a further
time ¢, ,, the entire soil undergoes elastic deformation. This elastic motion is usually ter-
minated by the onset of plastic yield, and a new plastic region then spreads outwards from
the camouflet surface. The deformation is now plastic-elastic, and the first contraction
phase terminates when the camouflet surface comes to rest for the second time. Two cases
can thus arise according as the first contraction phase is or is not solely one of elastic defor-
mation. In the former case, all deformations following the termination of the first expansion
phase are likely to be elastic, and then a single analysis formally completes the solution. In
the latter case, separate analysis is required for cach of the two stages of the motion during
the first contraction phase, and further analysis of the motion after the end of this phase is
also required. This is the more general case and will now be considered.

(a) Elastic deformation. Initially, the motion involves only elastic deformation, and this
situation persists for a time ¢, ,. The motion is governed by equations (7-1) to (7-4), but their
application is complicated by the presence of a plastically deformed region at the end of
the first expansion phase.

Let the co-ordinate of any particular material point at the end of the first expansion
phase (¢ = ¢,) be r;, and at a subsequent time ¢ (> ¢,) be 7 (< ;). Thenr}—a} = r*—a3, by
the incompressibility condition. After the end of the first expansion phase, the boundary
separating plastically and elastically deformed material will be convected and at time
¢ (> ¢,) its radius will be denoted by X(a), the camouflet radius still being denoted by
a. Then X3(a) —a® = b} —a}, by the incompressibility condition. In the subsequent motion
the regions a < r < X(a) and r > X(a) must be separately considered. The previous result
that X, defined in equation (7-3), is constant for any material point still applies, but its
value is now necessarily determined by reference to conditions at time ¢,. In this way it
is found that

r 2E af{ __a3} Y+ “P(d]) 7-3 . a3}—20&/{3(1+0&)}
o N SN T S N Y P
3 ln{l+ r3 R {l+ a3
3 __ 43} ~2a/{3(1+a)} 3__ 3\ -%
q—0, =1 —pgmad [T ] << X@),f (129)
r 1—o ay ai

(r > X(a)),

7/

2F r?*af{—kaf’)}r 2E a3*a3}
NI N

\

equations (7-25,) and (7-7) being identical since elastic deformations are recoverable. The
equation of motion (7-1) holds in both regions, and integration, with use of equations (7-25)
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and the stress boundary conditions at the camouflet surface and atinfinity (equations (5-27)),

281

shows that
3__
S
9
[peg e
ﬂoa a
Y+ocP( a,) a . } f x3M43}~2a/{3(1+a)}dx .
7= { 1+a “—l_aﬂoalal a{1+ P ™ (7-26)

4FE

— 11— L

+ho [dd‘i‘%‘iZ_{

{a3 — ao} —p, {

a%d +2aa? a4a'2:]

ot

a%i +2aa? a4d2}

7 2rt

(a <r< X(a)),

(r> X(a)). |

The continuity of ¢, and ¢, is required at the boundary r = X(a). Evaluation of equation
(7-21) when ¢ = ¢, shows at once, from equations (7-25), that ¢, — 0, is continuous. The con-
tinuity of o, shows, from equations (7-26), that a(f) satisfies the equation

< 1
x3 — a3}‘3 dx

a3 x

. . 2& . 1Y(ll)
P(a)~ I~ pofad+42) = pomd, | {1+

a

Y+aP(a)) a . }J‘X(a) x5 — a3}~2a/<3(1+a»£1§
+—2{ T7a 1o L Potdy {1 A x>

a3
+%Tm41

1
which is to be integrated under the initial conditions

(7-27)

o)L+ Lo

a=a, a4=a =0 when ¢=1¢,. (7-28)

The above analysis remains valid until such time as the yield condition is again satisfied.
It is to be expected that ¢, — 0, < 0, and hence, from equation (5+95), the appropriate yield
condition, obtained by taking w = —1, is

(14+a)o,—0y—Y =0, (7-29)

where Y and « are defined in equation (7-15). Plastic yield occurs first at the camouflet
surface, when ¢ = ¢,+¢, , and a = a, ,. Then, from equations (7-25,) and (7-29), setting
7= a and g, = — P(a), it follows that a, , is given by

2E(1+a)1n (a)/ay, ) —aP(a)) —a(1+a) Play,,)

(b) Plastic-elastic deformation. When the camouflet radius decreases below a, , a new plastic
region spreads outwards from the camouflet surface into a region which has previously
undergone plastic deformation. Separate analyses are now required for the elastic and plastic
regions, and account must also be taken of the plastic deformation already undergone by
part of the soil. At time ¢ > ¢, +1, ,, the radius of the new plastic-elastic boundary will be
denoted by d(£), so that theregions a(¢) < r < d(t) andr > d(f) are currently undergoing plas-
tic and elastic deformation respectively, and the boundary r = d(¢) is at yield. Three regions
are considered: (i) a < r < d, which is currently undergoing, and has previously undergone,

—(24a) Y =o0. (7-30)
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plastic deformation; (ii) d < r < X(a), which is currently undergoing elastic, but has pre-
viously undergone plastic, deformation; and (iii) » > X(a), which is continuing to undergo
elastic deformation. This analysis will be valid until the second region is completely
engulfed by the first, when d = X, but later argument suggests that this stage is not likely to

be reached.

The stresses in the three regions are obtainable from the equations

0,—0y=Y—o0,

oL

0 1420 | Ir 7

]

o2F ——a3 Y+aP(a 73—
(fr~(r,}::~—3-l {1+ } IHE 1){1+ .

613} —2a/{3(1+a)}
1

a . 73— @3}~ 2031+ a); 3 —ad) "t
g {1 S

1

4E7 .. (@*—a} . f(@d—a}
55 Ly | L[]

¥ x3—a3y - dx
Y I__aP(a1> o ¥ x3 (lS 206/{3(1+06)}dx
vl i maal[
a’d-+2aa*  a*a?
— 0{‘——?**—“5;4*} (d(t) <7<X

g, =—I]——

4F a’—a} a%i--2aa?  a'q?
A 9 Liyi=——5—1—po

D 5;2{} (r > X(a)),

(7-31)

(7-32)

(7-33)

where G(?) is a disposable function determined below. The stresses o, and ¢, (or equivalently
s, and ¢,—0,) must be continuous at the boundaries r = d(¢) and r = X(a). It follows as
before, from equations (7-21) and (7-25), that g,— 0, is continuous at r = X(a). The other
three conditions show that a(t), d(¢) and G(¢) are to be determined as functions of ¢ from

the equations

4E. . (—a]
Gf) — —IT— LZ{}S—(—%"},

ey fo) e () ]wﬂomﬂ} {3}4]

2k —a3 o
31 {1—]— 7 —}— ,ooa1 { }
} 200 [{3(1 -+ o)}

(Y +aP(e) a}{
{ I+a 1 g 0%

-

(7-34)

(7-35)
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Y Y) (a) 2> ad+2a%["(a)~2* 2aa a% [fa\"2* qa* w
i P@+| 5] G+ “/’OQTaﬂzz} +53]

20 (4 [ —a¥|Hdx

ﬁ_n+1*“p0ala1fx<a){l+ a3 } x

?
Y+ ocP(al) @ . fd x3 a3} 2a/(3(1+ )} ]

AT ) sl a5

Equations (7-:35) and (7-36) are to be integrated under the initial conditions

(7-36)

a=ay, 4=4a,, d=a,, when ¢=1t+1,,. (7-37)

The above analysis is valid only while d(¢) < X(#) and, as d(f) > 0 and X(f) < 0, this
inequality may be violated. However, for frictionless soils it can be proved, with use of
cquations (7-21) and (7-35), that this cannot happen. For frictional soils, since the amplitude
of the return motion is reduced by internal friction, the same is still likely to be true, in
which case the above analysis is valid for all soils until the end of the first contraction phase.
This is henceforth assumed, but it may be noted that the analysis of any situation in which
the above conjecture is false requires attention only to two regions: a < r < d, which is
undergoing plastic deformation, and r > d, which is continuing to undergo elastic defor-
mation.

The first contraction phase terminates at time ¢ = £, 4, given by

a(t,+1,) = 0. (7-38)
7-1-3. Subsequent pulsations
The formal analysis of the motion following the end of the first contraction phase is
straightforward. However, so long as the motion continues to involve plastic deformation,
each of its successive phases must be considered separately. Ultimately a state of elastic
oscillation is attained.

7-1-4. Numerical procedures

The basic analysis of the camouflet motion during the first expansion and contraction
phases is given in §§ 7-1-1 to 7-1-3. Some discussion is now given of the numerical solution
of the camouflet equations (7-12); (7-21), (7-22); (7-27); and (7-35), (7-36). In com-
parison with the analysis for point source models, the present equations are more
complicated, since b/a does not remain constant. In general, it is now necessary to integrate
two simultaneous non-linear second-order ordinary differential equations for the functions
a(t) and b(t) or d(¢). The numerical procedure adopted is again the Runge-Kutta method
due to Gill (1951), which applies to any number of simultaneous ordinary differential
equations. As in §6-1-3, the appropriate camouflet equations are first reduced to non-
dimensional form by introducing a non-dimensional time 7 and distance x defined by

T =cytlag, &= ala,, where 3 =E]/p,, (7-39)

and they are then rewritten as a set of simultaneous first-order differential equations after
the introduction of suitable subsidiary variables. The particular systems of equations used
were chosen for convenience in computation and are not given here. Numerical values

35 Vor. 256. A.
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have been obtained by means of two computer programs, CAM2A and CAM2B,
which apply to frictionless and frictional soils, respectively. Both programs also calculate
the energy partition, which will now be discussed. Numerical values are given in §7:1-7
for the three soils S, P and Z.

7-1-5. Partition of energy
The work done by the camouflet pressure is converted into elastic strain energy, kinetic
energy and plastic work in the soil, and also into potential energy stored at infinity.
The following notation is now introduced:
U, total energy input (work done by explosion products)
U, potential energy stored at infinity
U, total elastic strain energy of soil
U, total plastic work performed on soil
U, total kinetic energy of soil.

Therefore U, =U,+U;+ U+ U, (7-40)

where U,, U; and Uj correspond to the recoverable, and U, to the irrecoverable, energy
components.
At any stage the total energy input is

Lﬁzz4ﬂfalKa)a2d@ (7-41)

and, with use of equations (4-1) to (4-3), it follows that

B $nai Po{1 — (a/ay) =%} (afay < 1-530),) (7-42)
' 4na P{0-7497 — 0-4073(a)a,) "%} (a)a, = 1-530). |
Also, the potential energy stored at infinity is
_1m [ 2 1Y\ a% o Ar(,3 3 .
U,=1lim | 4nR*114+0 2 72 dt = $n(a®—a3) 11, (7-43)
R—>wd 0
and the total kinetic energy of the soil is

U, = 27rp0fw vZ2dr = 2ﬂp0a4d2fw%r = 2mp,a’d?, (7-44)

by the incompressibility assumption.

The remaining energy components, U; and U, must be evaluated separately for each
successive stage of the camouflet motion. It would be advantageous to have numerical
values for all the components individually, as the energy integral (7-40) would then
provide a numerical check. However, for frictional soils U, cannot be expressed in closed
form, and it is then simplest to compute values of U; and to use the identity

U, = U,—U,—U,— U, (7-45)

to obtain U,. It is not proposed to give a complete discussion of formulae for U; and U,
but certain simple results will be stated.
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The elastic strain energy of the soil per unit volume is
(0)—0,)?/2E, (7-46)
since the material is incompressible (see equation (5-34;)). Hence the total elastic strain
energy of the soil is o (o
U, =2 " (00,22, (7-47)

which may be evaluated with use of the formulae obtained for the stresses. In particular,
during the elastic part of the first expansion phase, ¢,— 0, is given by equation (7-7), and
it is found that

3 3 3
Uy = Eag[(%§~l) Liz{1—g-g}—lg1n2 {%}] (7-48)

0 0
Frictionless soils. Further simple results are obtainable only for frictionless soils, to which
attention will now be confined. The yield condition reduces to the form |¢,—0,| = Y. The
elastic strain energy per unit volume throughout any plastic region is therefore

Y?/2F, (7-49)
and the total elastic strain energy of the plastic region during the first expansion phase is
then

2n¥? .
Sp (). (7-50)

The total elastic strain energy of the elastic region is given by an expression similar to the
right-hand side of equation (7-48). The total plastic work done per unit volume of the soil is

Wo — f (o, det + 20, de), (7-51)

where the integral is evaluated along the strain path of material points being plastically
deformed. Now, from equation (5'34,), W? = wA(0,—0,)/2¢, where A is given in terms of
¢,, ¢y and v by equation (5-33,). In particular, since ¢ = 0 here, it may be shown that

: 2Ya?% D 7
b =200 oy z .
W =227 —2¥ g fln (%)} (7-52)
during the first expansion phase. Accordingly, the total plastic work done per unit volume is
We = 2YIn (i) (7-53)
T

for material at co-ordinate r at time ¢ which first became plastic at co-ordinate ry(r) at
time £y (r). Now if a(ty) = ay and b(ty) = by, then 7y — by, and the incompressibility
condition shows that r—a® — b, —dd. (7-54)

From equation (7-22), taking « = 0, the quotient (a®—ag)/b® is seen to be constant during
the first expansion phase. Hence, in particular,

(a§—a})[bi = 1 —dj/ai .. (7-55)
The elimination of a, between equations (7-54) and (7-55) determines by = ry, and hence

equation (7-53) becomes
2Y agrd
24 ”*Wo_wm}, :
s T (7:56)

35-2

We
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Finally, the total plastic work done on the plastic region is

U, ———-Yl: 3—ad) ln{ aj’o}—{—aﬂn{%ﬁ}]. ~ (7-57)

. €

7-1:6. Effect of rate of strain

In §4-2-3, attention is drawn to the fact that the strength of a soil is dependent upon
the rate of strain, and discussion given there shows that this effect is likely to be of signi-
ficance in the mechanics of camouflet formation. Some estimate of its importance is there-
fore necessary. That this question can only be answered in largely qualitative terms seems
clear for two reasons. First, reliable data concerning the effect of rate of strain on the strength
of soils are limited and are confined to relatively low rates of strain at low stress. Secondly,
any theoretical treatment attempting to take account of this effect would be difficult.
Therefore the inclusion of a rate-of-strain effect in a simplified theory of camouflet motion
must make use of average values of rates of strain. Although very high rates of strain do
occur near the camouflet surface, it will now be shown that average values, taken throughout
the plastic region during the first expansion phase and over the duration of this phase, are
much lower.

In incompressible deformation, all material is being sheared at the rate

7= 3(6,—¢&,) = 3a%/2r (7-58)
(see equations (5-31)). Thus 7 is large when ¢ is large and r is small, as in the early stage
of expansion and near the camouflet surface. Attention is now confined to the plastic region
during the first expansion phase. At any time ¢ (¢, , < ¢ < {,), the space average of j(r, {)
throughout this region is
1 b 9a%d b
() = % = 2% 15 (2 :
7*(¢) (5 — o) fa47rr y(r, £) dr (55— ln( ), (7-59)

a
and the time average of y*(¢) over the interval ¢;, < ¢ < ¢, is

2%
I'=—1| 9*@de. (7-60)
tl bY hye
The numerical value of T' is taken as a measure of the overall importance of rate of
strain during the first expansion phase. The integral (7-60) must, in general, be evaluated

numerically, although, when a = 0, I'is given explicitly by

f I: { _0}] a’da
4Et1 pY ae a®—a}

1 NI Ny .
4Et1 p[l { } { —ao}“l_L { o_a%,e Ll2{a3—(l?} ’ (7 61)

where it has been assumed that Y/E < 1, and use has been made of equation (7-22). Alter-
natively, the Penney-Taylor similarity theory, coupled with assumption B of § 6-1-3, gives
as an approximation to the formula (7-60) the result, valid for all types of soil,

91n (n) In (a,/a,)
2n3—1)¢

= (7-62)
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where the constant 7 is given by equation (6-7). For a frictionless soil, the approximation
(6-46) may further be substituted into equation (7-62) to give a more explicit formula for I'.

It may be noted from the formulae (7-61) and (7-62) that I't, , (or I't)) is independent
of the charge size. Since, according to the present theory, ¢, , (or £,) varies linearly with a,,
it follows that I' increases without limit as the charge size decreases. With use of equations
(7-58) and (7-62), approximate values of I' and 7,,,, , calculated from numerical values
given in § 6-1-4 for a 1 1b. charge buried at a depth of 100 ft. in soils S, P and Z, are given in
table 6. For other sizes of charge these values scale inversely with a,. It is apparent that
although very high rates of strain do occur during camouflet motion, their overall mean
value is much lower but still appreciable. For the mean rates of strain I" given in table 6,
the dynamic strengths of clays and sands are increased from their static values by factors
of about 2 and 1-2, respectively (see §4-2-3 and figure 4). Therefore, for charge masses of
11b. and over, suitable average values of ¢ and ¢ can be chosen, although it is clear that, in
general, aniterative procedure would have to be used to take account of rate-of-strain effects
on the present basis.

In obtaining the numerical results discussed in the next section, the foregoing procedure
has not, however, been followed. Instead, for simplicity, it has been assumed that the values
ofcand ¢ shown in table 3 refer directly to any particular dynamic situation under considera-
tion. Given a particular set of results, together with a value of a,, it is then possible to deter-
mine the static properties of the soil to which they refer. Although this inverse method has
the disadvantage that results for different values of @, thus correspond to soils with different
static properties, the general trends of variation of soil strength with rate of strain discussed
in §4-2-3 are not thought to be sufficiently well defined for the more elaborate procedure
to be justified here.

TABLE 6. NUMERICAL VALUES OF AVERAGE AND MAXIMUM RATES OF STRAIN DURING THE
FIRST EXPANSION PHASE OF EXPLOSIONS FROM 1 LB. CHARGES BURIED AT DEPTH OF 100 FT.

soil I'(s7) Vimaz. (s71)
S 7-3 1-5 x 10*
P 4-0 1-2 x 10*
z 227 11 x 10¢

7-1-7. Numerical values

Calculations, based upon the numerical procedures outlined in § 7-1-4, have been made
for the three soils S, P and Z (see §4.2.3) and for the four depths of charge burial of 50, 100,
250 and 500 ft. The computer programs determine the radii of the camouflet surface and the
plastic-elastic boundary during the first expansion and contraction phases, and the com-
ponents of energy partition during the first expansion phase only. It is only possible to
give here, in tabular and graphical form, a selection of the numerical values obtained.
A concise summary of the types of results is provided for reference in table 7. These results are
given mainly in non-dimensional form so that they apply to any charge size (but see tables 5
and 11). Table 9 gives some results in dimensional form for a 11b. charge.

It is apparent that certain features of the disturbance, such as, for example, the variation
with time of the radii of the camouflet surface and the plastic-elastic boundary, show much
dependence in detail upon the type of soil and the depth of charge burial. However, a
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12(‘ (1)

It 1 L 1 |

|
0 40 80 120 20 60 100
totlag
F1GURE 6. Variation of camouflet radius with time during first expansion and contraction phases,
according to the spherical charge model. Explosions at depths («) 50 ft., (b) 100 ft., (¢) 250 ft.

and (d) 500 ft. in soils (i) S, (i) P and (iii) Z. Arrows indicate maximum expansion (contraction
is negligible for soil P).

(i)
10
(i) 8 8 (iii)

6 6

4t 4

2 2

L ] L 1 || ] ] | ] I | l [ ¥
0 2 4 6 8 10 100 200 0O 20 60 100 O 20 40 60

cotla,
Frcure 7. Variation of ratio of radius of plastic-elastic boundary to radius of camouflet surface

with time during first expansion phase, according to spherical charge model. Explosions at
depth 100 ft. in soils (i) S, (ii) P and (iii) Z.
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number of general conclusions concerning camouflet motion can be drawn from the results
given in the tables and figures of this paper.

Discussing camouflet formation, Devonshire & Mott (1944) conjectured that ‘the initial
high pressure of the expanding gases sets the surrounding soil into such rapid motion out-
wards that its kinetic energy carries it on long after the pressure of the gases has fallen to a

I[!llltlll,ll&?lll\lMl

I
0 04 08 12 16 202 8 14 20 20 80 140 200

T

08

02

- | | I [ J
0 02 04 06 08 101 2 4 6 8 10 10 20 40 60 80 100

2:01
I (iif)

- | 1 1 \ |

Ll .
0 02 04 06 08 101 2 4 6 8 10 10 20 40 60
Gotlay
Ficure 8. Variation of velocity of camouflet surface with time during first expansion phase, according
to spherical charge model. Explosions at depth 100 ft. in soils (i) S, (ii) P and (iii) Z.
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negligible value’. This conjecture is amply verified by the results obtained in the present
study. Thus, for example, in the typical case of an explosion at a depth of 100 ft. in soil S,
figures 9 and 10 show that, after a time equal to one-twentieth of the duration of the first
expansion phase, the pressure of the gases has dropped by a factor of one thousand from its
initial value and the combined total energy of the gases and the soil is largely in the form of
kinetic energy of the soil. Subsequently, the other energy components of the soil increase
mainly at the expense of this kinetic energy, only very little being provided by the gases.

Ir

10

PIE,

10

| : | | I
0 40 80 120
cotlag

! !
160 200

Ficure 9. Variation of pressure exerted by explosion products of TN T on camouflet surface with
time during first expansion phase, according to spherical charge model. Explosion at depth
100 ft. in soil S.

Gm

4

o

b9

components of partition of
energy (105 ft.Lb.)

4
R ! ! Lo T
0 40 80 120 160 200

Gotlag
Figure 10. Variation of components of partition of energy with time during first expansion phase,

according to spherical charge model. Explosion of a one-pound charge of TN T at depth 100 ft.
in soil S.

(a) Energy of explosion products (5:09 x 109 ft. Lb. per pound of TN T available for camouflet

formation).

(b) Potential energy stored at infinity.

(¢) Total elastic strain energy in soil.

(d) Total plastic work done on soil.

(e) Total kinetic energy of soil.
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The variation of the velocity of the camouflet surface with time during the first expansion
phase, depicted in figure 8, shows the extremely rapid way in which the motion is generated.

Consider now the extent of the agreement between the point source and spherical charge
models during the first expansion phase. These models differ most noticeably in their pre-
dictions of the quotient 4/a. For the point source model this quotient is constant. For the
spherical charge model, as the deformation proceeds, it increases from unity, when plastic
deformation first occurs, to a value approximately equal to that predicted by the point
source model. However, the detailed numerical results show that this increase takes place
mainly during the early stage of the motion. Thus, for example, for a depth of charge burial
of 100 ft., figure 7 shows that b/a is close to its final value for the last 99, 80 and 65 9, of the
duration of the first expansion phase for soils S, P and Z respectively.

TABLE 7. SUMMARY OF RESULTS GIVEN IN TABLES 4, 8, 9 AND 10 AND IN FIGURES 5 TO 10

A, B refer to point source models coupled with assumptions 4 and B. C refers to spherical charge model.
location soil h (ft.) model variables time range

table 4 S, P, Z 100 A, B Ty 4y/ay, bla —
8 S, P, Z(MS) 50, 100, 250, 500 C Ty, Toy Gy]ag, 8y, /G0, —_
aylag, byay, dofay
9 S, P, Z 100 C b5 Loy @1y Aoy by, dy —
10 S, P, Z 50, 100, 250, 500 C 9 Usy Uy —
figure 5 S, P, Z 100 AB, C T, ajay, 0<7<T
6 S, P, Z 50, 100, 250, 500 C T, ala, 0771,
7 S, P, Z 100 C T, bla 07T
8 S, P, Z 100 C T, dfc, 07T
9 S 100 C T, P[P, os<t<m
10 S 100 C T, Uy, Uy, U, Uy, Uy 07T

Again, for the same depth of charge burial of 100ft., figure 5 and tables 4 and 8 show
the extent of the agreement between the predictions of the two models for certain other
features of the motion. It is apparent that the measure of agreement depends considerably
on the type of soil: for soil S it is good, for P only moderate and for Z it is poor. Thus the
agreement between the two models worsens as the internal friction of the soil increases.
The trend of these results is likely to be a consequence in part of the fact that the point source
model can be expected to be a good approximation to the spherical charge model only in
circumstances where aj is much smaller than 4® during the greater part of the motion. This
criterion is clearly better satisfied for soil § than for soils P and Z, but it cannot be the only
relevant factor, since it does not adequately distinguish between the latter two soils.

The first contraction phase has received attention only for the spherical charge model.
The results given in figure 6 and table 8 show that, for soils P and Z, and over the range of
depths of charge burial considered, camouflet motion is practically dead-beat (see §2-3).
In contrast, for the frictionless soil S this is not so. When # = 100 ft. the amplitude of the con-
traction motion is appreciable, and when % = 500ft. the return motion is practically
complete, the first expansion and contraction phases then closely resembling those of the
bubble associated with an underwater explosion. This behaviour might be anticipated
from the results given in table 10, which shows the energy partition at the end of the first
expansion phase. It is noticeable that for soil S the proportion of the total energy stored as
recoverable energy at this time is large, being about 40 %, when £ = 100ft. and 70 9%, when

36 Vor. 256. A.


http://rsta.royalsocietypublishing.org/

) §
C

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

—
NI
olm
~ =
kO
= O
= uw

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

292 P. CHADWICK, A.D. COX AND H. G. HOPKINS

h = 500ft. Therefore a relatively large fraction of the total energy is available to enforce
the compression of the explosion products.

Thus it appears that the internal friction of a soil is of decisive importance in determining
the extent of the first contraction phase, and that this is due to the fact that for a friction-
less soil a much smaller proportion of the total energy is dissipated during the first expansion
phase. Now it can be seen from equations (5-34,) and (7-18) that the rate of plastic work
per unit volume depends critically upon the value of the quantity ¢ = as,— Y. When « is

TABLE 8. NUMERICAL VALUES FOR SPHERICAL CHARGE MODEL

Ty, Ty, scaled times,

ay,0/0, a1/ay, aslay, scaled radii of camouflet surface.

by/ay, dyfa,, ratios of radii of plastic-elastic boundary and camouflet surface.

Subscripts 1 and 2 refer respectively to the ends of the first expansion and contraction phases.

depth of charge burial (ft.)

soil variable 50 100 250 500
S 71 2214 197-3 150-2 109-2
ay, ./a, 1-00013 1-:00013 1:00013 1:00013
a/a, 10-47 9-989 8:933 7-838
b,/a, 13:57 13:57 13-57 13-56
Ty 454-3 4979 458-0 2623
ay/a, 9-849 8:806 3-165 1-305
dy/a, 6:315 8-313 29-94 64-61
P T 114-7 94-19 64:19 4441
ay, Ja, 1-197 1-197 1197 1-197
a,/a, 8:005 7435 6-436 5-600
by/a, 10-82 9-959 8-442 7-176
T, 1257 105-0 74-24 53-60
ay/ay 7-993 7-420 6-414 5-569
Jas 1274 1-315 1-385 1-435
Z T, 70-59 52:65 33-58 23-18
ay, Ja 1419 1419 1-419 1-419
a,/a, 8:297 7-500 6-418 5-637
b/ay 7-876 6-665 5:192 4-254
Ty 92:16 72-02 49-85 37:09
a,/a, 8:199 7-370 6-217 5:355
dyla, 1:374 1:374 1:372 1-368
MS T — — 137:1 —
ay,./a, — — 1-040 —
a,la, — — 8-428 —
byla, —_ — 12-85 —
Ty — — 1412 —
aylay —_ — 8426 —_
dy/ay —_ — 1-:050 -

TABLE 9. NUMERICAL VALUES FOR SPHERICAL CHARGE MODEL: EXPLOSION OF A 1 LB.
SPHERICAL CHARGE (RADIUS 0-137 FT.) AT A DEPTH OF BURIAL OF 100 FT.

t;, &, times (ms).

a,, ay, radii of camouflet surface (ft.).

by, dy, radii of plastic-elastic boundary (ft.).

Subscripts 1 and 2 refer respectively to the ends of the first expansion and contraction phases.
¢y, reference velocity (ft./s), see equations (7-39).
11, initial hydrostatic pressure (Lb./in.?), see equation (5-28).

soil 4 a b, t ay d, o I
S 11-43 1-364 1851 28-84 1-203 9-999 2358 101-5
P 7-472 1-016 10-11 8-327 1-014 1-333 1722 101-5

VA 7472 1-025 6-829 10-22 1-007 1-383 962-6 84-14
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TaBLE 10. ENERGY COMPONENTS FOR SPHERICAL CHARGE MODEL

U,, potential energy stored at infinity.
Uj, total elastic strain energy in soil.
U,, total plastic work done on soil.
These components are evaluated at the end of the first expansion phase and expressed as a percentage of
the total energy input.
depth of charge burial (ft.)
Al

soil component 50 100 250 500
N U, 19-8 30-2 49-6 65-6
U, 9-1 7-9 57 39

U, 71-1 61-9 44-6 30-5

P U, 9-0 127 191 24-8
U, 49 50 53 57

U, 86-0 82-2 75-6 69-6

Z U, 8:5 10-8 15-4 20-3
U, 4-0 4-7 6-0 7-2

U, 87-5 84-4 78:6 72:5

exactly zero, ¢ is of the order of Y, but for quite small a, say 0-1, remembering that |, |
may be of the order of P, (which itself is of the order of 10*Y), ¢ is of the order of 10° Y.
This suggests that the character of the motion for a slightly frictional soil (i.e. one with a
small, but non-zero, value of «) differs radically from that for a frictionless soil (@ = 0).
In order to verify this conjecture, calculations were made for another type of soil, AS.
This soil has the same properties as soil § except that its angle of internal friction is now
taken to be 1° (see table 3). Numerical values are given in table 8 for a depth of charge
burial of 250 ft., and the comparison of corresponding results for the soils §'and AMS confirms
the above arguments; it should be noted, however, that the effect on the expansion phase is
comparatively small. It seems probable that the c¢ritical value of a, below which a soil of
slight friction is effectively frictionless, is perhaps of the order of 10~%. Now it is not likely
that « could ever be so small, since all soils are necessarily frictional to some extent, and, in
any event, no meaningful data are obtainable to the implied degree of accuracy. Thus a
further conclusion of the present study is that, although camouflet formation is not dead-
beatfor a frictionless soil, the unlikelihood of the natural occurrence of such a perfect material
means that this eventuality is to be wholly discounted for practical purposes. In other
words, camouflet formation is sensibly dead-beat under any practical conditions of interest,
as predicted by Penney (1954, private communication).

Finally, it should be noted that, as already observed, most of the numerical values derived
from the spherical charge model are presented here in dimensionless form, and restrictions
of the type discussed in § 6-1-4 must again be borne in mind when they are used to obtain
results for specific charge sizes. Now that results are available over a range of depths of
charge burial, it is possible to extend the results given in table 5 by expressing the criterion
of applicability of the theory in the form

h = mWnr, (7-63)

where, from the present results and for # < 500 ft., the parameters m and n have the
values given in table 11, W being pounds of T'NT and % being depth of charge burial

in feet.
36-2


http://rsta.royalsocietypublishing.org/

PN

s |

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

294 P. CHADWICK, A. D. COX AND H. G. HOPKINS

TABLE 11. VALUES OF PARAMETERS IN RESTRICTION (7:63) ON CHARGE MASS FOR
DEPTHS OF CHARGE BURIAL NOT EXCEEDING 500 FT.

soil m n
N 22 0-29
P 18 0-25
Z 15 0-35

7-1-8. Comparison with experimental data

Very few experimental data on camouflet formation are available, and the majority of
them concern the depth of charge burial necessary to ensure that no major disruption
occurs at ground level. It is apparent that this criterion is considerably less restrictive
than that given in §7-1-7, which demands a depth of charge burial supposedly sufficient
to ensure spherically symmetric conditions. Experimental work on camouflet formation
was undertaken during World War Il in order to assist the detection of unexploded bombs.
The results obtained show that a depth of charge burial of about 3-5 to 7 W ft. (depending
upon the soil type) is necessary if the surface of the ground is not to be ruptured.

So far as camouflet dimensions are concerned, all the available British work has been
summarized by Christopherson (1946), who states that only for a few explosions, all in
clay, have camouflets been excavated and measured. It is usually found that the cavity
is nearly spherical, of volume 9 to 11 W ft.3 (or diameter 25 to 2-7W3 ft.). This result leaves
unspecified the types of clay, and also the depth of charge burial, which presumably is
relatively small. For comparison, the results for soil § at a depth of charge burial of 50 ft.
lead to a camouflet diameter of 2-9W?ft. or, extrapolating to zero depth of charge burial
(or rather to a value of IT of 14-7Lb./in.2), of about 3-0W:ft. Thus there appears to be
reasonable agreement in this case between predictions of the present camouflet model and
experimental data for the dimensions of camouflets.

7-2.  Constitutive equations for large elastic deformations

The numerical values given in table 8 for a spherical charge model of camouflet formation
show that large elastic deformations can occur during the elastic part of the first expansion
phase if the soil is frictional. This effect is a consequence of the form of equation (7-16).
In §7-1 the analysis incorporates finite elastic deformation through the use of the convective
form of Hooke’s stress-strain relations under the condition of incompressibility. Experi-
mental data on the mechanical behaviour of soils at high stress intensities are not available.
For infinitesimal elastic deformation the experimental data tend to support the use of
Hooke’s law, but for finite elastic deformation the choice of suitable stress-strain relations
from the wide range of possibilities must largely be governed by considerations of mathe-
matical expediency. For purposes of comparison, a brief discussion will now be given of
the analysis (analogous to that of § 7-1-1) which incorporates finite neo-Hookean (in place
of convective-Hookean) incompressible elastic deformation. The so-called neo-Hookean
solid is a special case of a Mooney solid (see Green & Zerna 1954, pp. 76 and 104-108).

Under spherically symmetric conditions, the relation between stress and displacement
for a neo-Hookean incompressible elastic solid gives

Rl o
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for a material point with current co-ordinate r and initial co-ordinate 7,(r), where E is
a physical constant which, for small strains, is shown later to be Young’s modulus. The
incompressibility condition requires that
r—13 = a®—a}, (7-65)
and then equation (7-64) becomes
—ad) (2r3—a*+ad
o El@=a) (2~ +a)

7:66
3 74(73—a3+a8)% ( )

Since a > a,, equation (7-66) shows that o, > ¢,. If the right-hand side of equation (7-66)
is expanded to the first order in (a®—a3)/r® and the result compared with the expression for
7,— 0, given by the generalized Hooke’s law with v = %, then £ is seen to be Young’s
modulus.

The equation of motion is

do, | 2(0,—0p) a%i+2ad*  2a*q*
o) g [FELRE B, (7-67
Therefore, from equations (7-66) and (7-67), ¢, satisfies the equation
do a%i+2ad®  2a*% 2K (a®—ad) (23 —a®+ad)
9, { - =L ' (7-68)
or r? 7’ 3 (r3 — a3 +aj)*

Integration of this equation subject to the stress boundary condition at infinity (equations
(5-27)) shows that

6
)= 11 ?f@i?ﬁ’élﬁidf} E(5r°—2(a’—af) ' — (&’ —ap)* 5}
0= /’0{ o4 { (3 —ad+al)t '

a%i+2aa? a*? E -a3+a 513 —a3+4-a3
fn:—lkpo{ ; —2r4:+—{( b) rﬁ 0)—5},
(7-69)

The stress boundary condition at the camouflet surface (equations (5-27)) shows that a
satisfies the equation

4
py(ai+302) +2 520 (2] |-r@+m1=o. (7-70)
6 a a,
From equations (7-14) and (7-64), yield first occurs at the camouflet surface when a = q, ,,
where Er(a. )2
(1+a)5 [{ l’e} —{ }] Y -+aP(a, ,) (771)
a4y al e

(cf. equation (7-16)). This equation also predicts that, for frictional soils, large elastic strains
occur near the camouflet surface prior to yield (see table 12).

The analysis of the motion after the termination of the elastic part of the first expansion
phase is similar to that given in § 7-1-1 (4) et seq. and is not presented here.

7-2-1. Numerical values

In table 12, numerical values are given of 7, a4, ,/a,, a,/a, and b,/a, for the three soils
S, P and Z and for the depth of charge burial of 100 ft. Itisseen that there is good agreement
between the results for the models incorporating convective-Hookean or neo-Hookean
elastic deformation, and hence it appears that numerical values are not crltlcally dependent
upon the particular choice made of elastic stress-strain relations.

36-3
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TABLE 12. NUMERICAL VALUES FOR SPHERICAL CHARGE MODELS INCORPORATING CON-
VECTIVE-HOOKEAN OR NEO-HOOKEAN ELASTIC DEFORMATION. DEPTH OF CHARGE
BURIAL, 100 FT.

7, scaled time.

ay, Jag, scaled radius of camouflet surface at onset of plastic yield.

a,/a,, scaled radius of camouflet surface at end of first expansion phase.

b,/a,, ratio of radius of plastic-elastic boundary to radius of camouflet surface at end of first expansion
phase. ) ) .

C, N refer to assumptions of convective-Hookean or neo-Hookean elastic deformation.

soil assumption T ay, ./ay a/a, byla,
N c 197-3 1-00013 9-989 13-57
N 197-3 1-:00013 9-989 13-57
P o 94-19 1-197 7-435 9-959
N 94-30 1-208 7-443 9-957
Z C 52-65 1-419 7-500 6-665
N 52-82 1-440 7-524 6-663

7-3. Other theories

The most serious limitation of the spherical charge model of camouflet formation
described in §7-1 is the assumption of elastic incompressibility, and the consequent errors
incurred are unlikely to be negligible. If the effects of compressibility in the elastic region
were to be included, then the analysis would become more complicated, due primarily to
the fact that the elastic wave motion would have to be determined throughout an infinite
region bounded internally by a moving plastic-elastic boundary. If incompressibility is still
assumed in the plastic region, there are difficulties in appropriately matching the elastic
and plastic fields at the plastic-elastic boundary, and no satisfactory model of this type has
yet been developed. However, if the spherical charge model considered in §7-1 is dis-
carded, then the logical procedure is to take full account of elastic compressibility effects
and to adopt a purely numerical approach ab initio. This procedure has not yet been
attempted, even for the simpler case of a frictionless soil.

Mention should be made here of a spherical charge model suggested by Hicks (1954,
private communication), which is based upon his non-similarity theory (see §6:2). The
camouflet equations of Hicks’s theory, together with the initial conditions a = a, (= 0),
@ =0 and b = q, at ¢ = 0, do not, except when a = 0, lead to a situation of geometrical
similarity, in contrast to the system of camouflet equations (6:12) and (6:38) for the point
source model of § 6-1 incorporating assumption B. In contrast to the theory developed in
§7-1, Hicks’s model takes no account of the elastic deformation which occurs at the begin-
ning of the first expansion phase.

Work has also been done in the Soviet Union on explosions in solid media, particularly
porous soils. In this work, which appears to originate with a paper by Kompaneets (1956),
the types of ideal soil considered are different from those of the present paper. Extensive
developments have been made by Kukudzhanov (1958), Lovetskii (1958, 1959), Romashov,
Rodionov & Sukhotin (1958), Andriankin & Koryavov (1959) and Zvolinskii (1960)
(see also Kochina & Mel'nikova 1958 who, following work of Sedov 1959, pp. 235 ¢t seq.,
discuss similarity solutions). Some account of this work is given by Cristescu (1958,
pp. 227 et seq.; 1960). No attempt is made here to summarize these papers in detail, but as
the work of Zvolinskii (1960) is of particular interest, a brief account of it will now be given.
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Zvolinskii’s (1960) analysis applies to the detonation underground of an explosive
charge, spherically symmetric conditions being assumed. The infinite homogeneous region
of soil in which the charge is buried is treated as an elastic, perfectly plastic solid. In the
elastic range Hooke’s law is satisfied. The transition from the elastic to the plastic range is
accompanied instantaneously by an increase in density of an assigned amount. In the
plastic range the density is constant and a plasticity condition, equivalent to Coulomb’s
law of failure, is satisfied. This condition follows from a hypothesis concerning the plastic
rate of work, and in subsequent analysis only a special case (which corresponds to equation
(6-1) with & = 1) is treated. Following the initiation of the explosion at the charge centre,
the motion of the soil is described in four stages (no detailed account being taken of the
motion of the explosion products). During the first stage a shock wave travels outwards
from the camouflet surface, compacting the soil through which it passes. As the radius of
the shock front increases the shock velocity decreases. The second stage begins when this
velocity becomes equal to the compressional elastic wave velocity in the soil, and a com-
pressional elastic wave then detaches itself from the shock front and runs ahead. The shock
velocity continues to decrease, and eventually the discontinuity in particle velocity across
the front is reduced to zero and the shock wave ceases to exist. This marks the beginning of
the third stage, and the boundary between the plastically and elastically deforming regions
is now treated as a moving contact discontinuity at which elastic waves continue to be
generated. Further plastic deformation occurs, but the plastic-elastic boundary and the
camouflet surface are now rapidly brought to rest. Finally, during the fourth stage the
motion consists entirely of elastic waves. Since the compacted soil is assumed to be incom-
pressible, the time variable can be effectively eliminated from the analysis and the governing
equations reduced to non-linear ordinary differential equations of the first order. Having
derived these equations and stated the conditions which their solutions must satisfy, Zvol-
inskii deduces the salient features of camouflet formation without recourse to detailed
computation.

8. CONCLUDING REMARKS

Studies in the theoretical mechanics of explosion phenomena in soils are necessarily
based upon models in which considerable simplifications of the physical situation are
assumed, owing to the complex physical characteristics of soils as well as in the interests of
mathematical tractability. The model of a deep underground explosion which has been
adopted in this paper is believed, however, to provide a realistic account of the large-scale
features of camouflet motion. Its main deficiencies are attributable to the neglect of soil
compressibility, which eliminates the effects associated with the propagation of elastic
and plastic waves, and to the extrapolation of conventional soil behaviour to explosion
conditions.

The main predictions of the model studied are as follows. In all cases of practical
interest, the initial expansion of the camouflet is large and occurs rapidly, with an extensive
region of the surrounding soil undergoing plastic deformation. The amplitudes of any
subsequent pulsations are small. The features of the disturbance show much dependence
upon the type of soil and upon the depth at which the explosion takes place.

Although models incorporating a soil plasticity theory are certainly not universally
appropriate to studies of situations involving large deformations in soils due to explosions,
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the present study is believed to be realistic and to represent an advance in knowledge of
the mechanics of deep underground explosions.

The work described in this paper was commenced in 1956 at Aldermaston (by P.C.)
and at Fort Halstead (by A.D.C. and H.G.H.), and the two investigations proceeded
independently until detailed computation was first undertaken in 1958. The present paper
brings together in a unified presentation the main results of the work done by the three
authors.

The authors wish to thank Sir Geoffrey Taylor, F.R.S. and Sir William Penney, I.R.S.
for providing the original stimulus for this investigation and for kindly agreeing to the
incorporation in this paper of their similarity solution for camouflet formation in soils,
previously unpublished. The early stages of the work at Aldermaston benefited much from
the interest taken in it by Mr E.P. Hicks and Mr G. C. Scorgie, the former of whom has
kindly agreed to the references in this paper to his unpublished extension of the Penney-
Taylor theory. At Aldermaston, a large number of preliminary calculations were done on
the Deuce computer by Mr B. W. Pearson, and, in later computation carried out on the
I.B.M. computers, assistance was given by Dr R. Palmer. Finally, the authors are grateful
to Dr L. F. Cooling (Building Research Station, Garston) and Dr R. E. Gibson (Department
of Civil Engineering, Imperial College of Science and Technology, London) for their
advice on the choice of physical data for soils, and to Professor R. Hill, F.R.S. for his
comments on this paper.

Acknowledgement is made to the Controller of H.M. Stationery Office for permission
to publish this paper.
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